This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of scalar product is scalar product of projection. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjadjt.1 | |- H e. CH |
|
| Assertion | pjmuli | |- ( ( A e. CC /\ B e. ~H ) -> ( ( projh ` H ) ` ( A .h B ) ) = ( A .h ( ( projh ` H ) ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjadjt.1 | |- H e. CH |
|
| 2 | fvoveq1 | |- ( A = if ( A e. CC , A , 0 ) -> ( ( projh ` H ) ` ( A .h B ) ) = ( ( projh ` H ) ` ( if ( A e. CC , A , 0 ) .h B ) ) ) |
|
| 3 | oveq1 | |- ( A = if ( A e. CC , A , 0 ) -> ( A .h ( ( projh ` H ) ` B ) ) = ( if ( A e. CC , A , 0 ) .h ( ( projh ` H ) ` B ) ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( A = if ( A e. CC , A , 0 ) -> ( ( ( projh ` H ) ` ( A .h B ) ) = ( A .h ( ( projh ` H ) ` B ) ) <-> ( ( projh ` H ) ` ( if ( A e. CC , A , 0 ) .h B ) ) = ( if ( A e. CC , A , 0 ) .h ( ( projh ` H ) ` B ) ) ) ) |
| 5 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. CC , A , 0 ) .h B ) = ( if ( A e. CC , A , 0 ) .h if ( B e. ~H , B , 0h ) ) ) |
|
| 6 | 5 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( projh ` H ) ` ( if ( A e. CC , A , 0 ) .h B ) ) = ( ( projh ` H ) ` ( if ( A e. CC , A , 0 ) .h if ( B e. ~H , B , 0h ) ) ) ) |
| 7 | fveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( projh ` H ) ` B ) = ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) |
|
| 8 | 7 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. CC , A , 0 ) .h ( ( projh ` H ) ` B ) ) = ( if ( A e. CC , A , 0 ) .h ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( projh ` H ) ` ( if ( A e. CC , A , 0 ) .h B ) ) = ( if ( A e. CC , A , 0 ) .h ( ( projh ` H ) ` B ) ) <-> ( ( projh ` H ) ` ( if ( A e. CC , A , 0 ) .h if ( B e. ~H , B , 0h ) ) ) = ( if ( A e. CC , A , 0 ) .h ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) ) ) |
| 10 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 11 | 0cn | |- 0 e. CC |
|
| 12 | 11 | elimel | |- if ( A e. CC , A , 0 ) e. CC |
| 13 | 1 10 12 | pjmulii | |- ( ( projh ` H ) ` ( if ( A e. CC , A , 0 ) .h if ( B e. ~H , B , 0h ) ) ) = ( if ( A e. CC , A , 0 ) .h ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) |
| 14 | 4 9 13 | dedth2h | |- ( ( A e. CC /\ B e. ~H ) -> ( ( projh ` H ) ` ( A .h B ) ) = ( A .h ( ( projh ` H ) ` B ) ) ) |