This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a projection and its argument is nonnegative. (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjadjt.1 | |- H e. CH |
|
| Assertion | pjige0i | |- ( A e. ~H -> 0 <_ ( ( ( projh ` H ) ` A ) .ih A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjadjt.1 | |- H e. CH |
|
| 2 | 1 | pjhcli | |- ( A e. ~H -> ( ( projh ` H ) ` A ) e. ~H ) |
| 3 | normcl | |- ( ( ( projh ` H ) ` A ) e. ~H -> ( normh ` ( ( projh ` H ) ` A ) ) e. RR ) |
|
| 4 | 2 3 | syl | |- ( A e. ~H -> ( normh ` ( ( projh ` H ) ` A ) ) e. RR ) |
| 5 | 4 | sqge0d | |- ( A e. ~H -> 0 <_ ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) |
| 6 | 1 | pjinormi | |- ( A e. ~H -> ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) |
| 7 | 5 6 | breqtrrd | |- ( A e. ~H -> 0 <_ ( ( ( projh ` H ) ` A ) .ih A ) ) |