This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of scalar product is scalar product of projection. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjadjt.1 | ⊢ 𝐻 ∈ Cℋ | |
| Assertion | pjmuli | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjadjt.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | fvoveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) ) | |
| 3 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( 𝐴 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) ) |
| 5 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 7 | fveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) = ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 9 | 6 8 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ 𝐵 ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
| 10 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 11 | 0cn | ⊢ 0 ∈ ℂ | |
| 12 | 11 | elimel | ⊢ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ∈ ℂ |
| 13 | 1 10 12 | pjmulii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
| 14 | 4 9 13 | dedth2h | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |