This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a projection and its argument is nonnegative. (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjige0 | |- ( ( H e. CH /\ A e. ~H ) -> 0 <_ ( ( ( projh ` H ) ` A ) .ih A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( H = if ( H e. CH , H , 0H ) -> ( projh ` H ) = ( projh ` if ( H e. CH , H , 0H ) ) ) |
|
| 2 | 1 | fveq1d | |- ( H = if ( H e. CH , H , 0H ) -> ( ( projh ` H ) ` A ) = ( ( projh ` if ( H e. CH , H , 0H ) ) ` A ) ) |
| 3 | 2 | oveq1d | |- ( H = if ( H e. CH , H , 0H ) -> ( ( ( projh ` H ) ` A ) .ih A ) = ( ( ( projh ` if ( H e. CH , H , 0H ) ) ` A ) .ih A ) ) |
| 4 | 3 | breq2d | |- ( H = if ( H e. CH , H , 0H ) -> ( 0 <_ ( ( ( projh ` H ) ` A ) .ih A ) <-> 0 <_ ( ( ( projh ` if ( H e. CH , H , 0H ) ) ` A ) .ih A ) ) ) |
| 5 | 4 | imbi2d | |- ( H = if ( H e. CH , H , 0H ) -> ( ( A e. ~H -> 0 <_ ( ( ( projh ` H ) ` A ) .ih A ) ) <-> ( A e. ~H -> 0 <_ ( ( ( projh ` if ( H e. CH , H , 0H ) ) ` A ) .ih A ) ) ) ) |
| 6 | h0elch | |- 0H e. CH |
|
| 7 | 6 | elimel | |- if ( H e. CH , H , 0H ) e. CH |
| 8 | 7 | pjige0i | |- ( A e. ~H -> 0 <_ ( ( ( projh ` if ( H e. CH , H , 0H ) ) ` A ) .ih A ) ) |
| 9 | 5 8 | dedth | |- ( H e. CH -> ( A e. ~H -> 0 <_ ( ( ( projh ` H ) ` A ) .ih A ) ) ) |
| 10 | 9 | imp | |- ( ( H e. CH /\ A e. ~H ) -> 0 <_ ( ( ( projh ` H ) ` A ) .ih A ) ) |