This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a projection and its argument is nonnegative. (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjige0 | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → 0 ≤ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( projℎ ‘ 𝐻 ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) ) |
| 3 | 2 | oveq1d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) ·ih 𝐴 ) ) |
| 4 | 3 | breq2d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( 0 ≤ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ↔ 0 ≤ ( ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) ·ih 𝐴 ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( 𝐴 ∈ ℋ → 0 ≤ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ) ↔ ( 𝐴 ∈ ℋ → 0 ≤ ( ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) ·ih 𝐴 ) ) ) ) |
| 6 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 7 | 6 | elimel | ⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ∈ Cℋ |
| 8 | 7 | pjige0i | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ‘ 𝐴 ) ·ih 𝐴 ) ) |
| 9 | 5 8 | dedth | ⊢ ( 𝐻 ∈ Cℋ → ( 𝐴 ∈ ℋ → 0 ≤ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → 0 ≤ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ) |