This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of a vector in the projection subspace. Lemma 4.4(ii) of Beran p. 111. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjch | |- ( ( H e. CH /\ A e. ~H ) -> ( A e. H <-> ( ( projh ` H ) ` A ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | |- ( H = if ( H e. CH , H , ~H ) -> ( A e. H <-> A e. if ( H e. CH , H , ~H ) ) ) |
|
| 2 | fveq2 | |- ( H = if ( H e. CH , H , ~H ) -> ( projh ` H ) = ( projh ` if ( H e. CH , H , ~H ) ) ) |
|
| 3 | 2 | fveq1d | |- ( H = if ( H e. CH , H , ~H ) -> ( ( projh ` H ) ` A ) = ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) ) |
| 4 | 3 | eqeq1d | |- ( H = if ( H e. CH , H , ~H ) -> ( ( ( projh ` H ) ` A ) = A <-> ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) = A ) ) |
| 5 | 1 4 | bibi12d | |- ( H = if ( H e. CH , H , ~H ) -> ( ( A e. H <-> ( ( projh ` H ) ` A ) = A ) <-> ( A e. if ( H e. CH , H , ~H ) <-> ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) = A ) ) ) |
| 6 | eleq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A e. if ( H e. CH , H , ~H ) <-> if ( A e. ~H , A , 0h ) e. if ( H e. CH , H , ~H ) ) ) |
|
| 7 | fveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) = ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) ) |
|
| 8 | id | |- ( A = if ( A e. ~H , A , 0h ) -> A = if ( A e. ~H , A , 0h ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) = A <-> ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) = if ( A e. ~H , A , 0h ) ) ) |
| 10 | 6 9 | bibi12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A e. if ( H e. CH , H , ~H ) <-> ( ( projh ` if ( H e. CH , H , ~H ) ) ` A ) = A ) <-> ( if ( A e. ~H , A , 0h ) e. if ( H e. CH , H , ~H ) <-> ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) = if ( A e. ~H , A , 0h ) ) ) ) |
| 11 | ifchhv | |- if ( H e. CH , H , ~H ) e. CH |
|
| 12 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 13 | 11 12 | pjchi | |- ( if ( A e. ~H , A , 0h ) e. if ( H e. CH , H , ~H ) <-> ( ( projh ` if ( H e. CH , H , ~H ) ) ` if ( A e. ~H , A , 0h ) ) = if ( A e. ~H , A , 0h ) ) |
| 14 | 5 10 13 | dedth2h | |- ( ( H e. CH /\ A e. ~H ) -> ( A e. H <-> ( ( projh ` H ) ` A ) = A ) ) |