This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the left projection function, which takes two subgroups t , u with trivial intersection and returns a function mapping the elements of the subgroup sum t + u to their projections onto t . (The other projection function can be obtained by swapping the roles of t and u .) (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pj1 | |- proj1 = ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ( z e. ( t ( LSSum ` w ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` w ) y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpj1 | |- proj1 |
|
| 1 | vw | |- w |
|
| 2 | cvv | |- _V |
|
| 3 | vt | |- t |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- w |
| 6 | 5 4 | cfv | |- ( Base ` w ) |
| 7 | 6 | cpw | |- ~P ( Base ` w ) |
| 8 | vu | |- u |
|
| 9 | vz | |- z |
|
| 10 | 3 | cv | |- t |
| 11 | clsm | |- LSSum |
|
| 12 | 5 11 | cfv | |- ( LSSum ` w ) |
| 13 | 8 | cv | |- u |
| 14 | 10 13 12 | co | |- ( t ( LSSum ` w ) u ) |
| 15 | vx | |- x |
|
| 16 | vy | |- y |
|
| 17 | 9 | cv | |- z |
| 18 | 15 | cv | |- x |
| 19 | cplusg | |- +g |
|
| 20 | 5 19 | cfv | |- ( +g ` w ) |
| 21 | 16 | cv | |- y |
| 22 | 18 21 20 | co | |- ( x ( +g ` w ) y ) |
| 23 | 17 22 | wceq | |- z = ( x ( +g ` w ) y ) |
| 24 | 23 16 13 | wrex | |- E. y e. u z = ( x ( +g ` w ) y ) |
| 25 | 24 15 10 | crio | |- ( iota_ x e. t E. y e. u z = ( x ( +g ` w ) y ) ) |
| 26 | 9 14 25 | cmpt | |- ( z e. ( t ( LSSum ` w ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` w ) y ) ) ) |
| 27 | 3 8 7 7 26 | cmpo | |- ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ( z e. ( t ( LSSum ` w ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` w ) y ) ) ) ) |
| 28 | 1 2 27 | cmpt | |- ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ( z e. ( t ( LSSum ` w ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` w ) y ) ) ) ) ) |
| 29 | 0 28 | wceq | |- proj1 = ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ( z e. ( t ( LSSum ` w ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` w ) y ) ) ) ) ) |