This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of a p-group. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pgpfi.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| Assertion | pgphash | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgpfi.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | simpl | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑋 ∈ Fin ) → 𝑃 pGrp 𝐺 ) | |
| 3 | pgpgrp | ⊢ ( 𝑃 pGrp 𝐺 → 𝐺 ∈ Grp ) | |
| 4 | 1 | pgpfi2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
| 6 | 2 5 | mpbid | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑋 ∈ Fin ) → ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 7 | 6 | simprd | ⊢ ( ( 𝑃 pGrp 𝐺 ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |