This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when A and R are sets. (Contributed by Peter Mazsa, 25-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brerser | |- ( ( A e. V /\ R e. W ) -> ( R Ers A <-> R ErALTV A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brers | |- ( A e. V -> ( R Ers A <-> ( R e. EqvRels /\ R DomainQss A ) ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. V /\ R e. W ) -> ( R Ers A <-> ( R e. EqvRels /\ R DomainQss A ) ) ) |
| 3 | eleqvrelsrel | |- ( R e. W -> ( R e. EqvRels <-> EqvRel R ) ) |
|
| 4 | 3 | adantl | |- ( ( A e. V /\ R e. W ) -> ( R e. EqvRels <-> EqvRel R ) ) |
| 5 | brdmqssqs | |- ( ( A e. V /\ R e. W ) -> ( R DomainQss A <-> R DomainQs A ) ) |
|
| 6 | 4 5 | anbi12d | |- ( ( A e. V /\ R e. W ) -> ( ( R e. EqvRels /\ R DomainQss A ) <-> ( EqvRel R /\ R DomainQs A ) ) ) |
| 7 | df-erALTV | |- ( R ErALTV A <-> ( EqvRel R /\ R DomainQs A ) ) |
|
| 8 | 6 7 | bitr4di | |- ( ( A e. V /\ R e. W ) -> ( ( R e. EqvRels /\ R DomainQss A ) <-> R ErALTV A ) ) |
| 9 | 2 8 | bitrd | |- ( ( A e. V /\ R e. W ) -> ( R Ers A <-> R ErALTV A ) ) |