This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the pet span ( R |X. (`' _E |`A ) ) partitions A , then every block u e. A is of the form [ v ] for some v that not only lies in the domain but also has at least one internal element c and at least one R -target b (cf. also the comments of qseq ). It makes explicit that pet gives active representatives for each block, without ever forcing v = u . (Contributed by Peter Mazsa, 23-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmqsblocks | |- ( ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) = A -> A. u e. A E. v e. dom ( R |X. ( `' _E |` A ) ) E. b E. c ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ c e. v /\ v R b ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qseq | |- ( ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) = A <-> A. u ( u e. A <-> E. v e. dom ( R |X. ( `' _E |` A ) ) u = [ v ] ( R |X. ( `' _E |` A ) ) ) ) |
|
| 2 | eqab2 | |- ( A. u ( u e. A <-> E. v e. dom ( R |X. ( `' _E |` A ) ) u = [ v ] ( R |X. ( `' _E |` A ) ) ) -> A. u e. A E. v e. dom ( R |X. ( `' _E |` A ) ) u = [ v ] ( R |X. ( `' _E |` A ) ) ) |
|
| 3 | 1 2 | sylbi | |- ( ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) = A -> A. u e. A E. v e. dom ( R |X. ( `' _E |` A ) ) u = [ v ] ( R |X. ( `' _E |` A ) ) ) |
| 4 | rexanid | |- ( E. v e. dom ( R |X. ( `' _E |` A ) ) ( v e. dom ( R |X. ( `' _E |` A ) ) /\ u = [ v ] ( R |X. ( `' _E |` A ) ) ) <-> E. v e. dom ( R |X. ( `' _E |` A ) ) u = [ v ] ( R |X. ( `' _E |` A ) ) ) |
|
| 5 | eldmxrncnvepres2 | |- ( v e. _V -> ( v e. dom ( R |X. ( `' _E |` A ) ) <-> ( v e. A /\ E. c c e. v /\ E. b v R b ) ) ) |
|
| 6 | 5 | elv | |- ( v e. dom ( R |X. ( `' _E |` A ) ) <-> ( v e. A /\ E. c c e. v /\ E. b v R b ) ) |
| 7 | 3simpc | |- ( ( v e. A /\ E. c c e. v /\ E. b v R b ) -> ( E. c c e. v /\ E. b v R b ) ) |
|
| 8 | 6 7 | sylbi | |- ( v e. dom ( R |X. ( `' _E |` A ) ) -> ( E. c c e. v /\ E. b v R b ) ) |
| 9 | exdistrv | |- ( E. c E. b ( c e. v /\ v R b ) <-> ( E. c c e. v /\ E. b v R b ) ) |
|
| 10 | excom | |- ( E. c E. b ( c e. v /\ v R b ) <-> E. b E. c ( c e. v /\ v R b ) ) |
|
| 11 | 9 10 | bitr3i | |- ( ( E. c c e. v /\ E. b v R b ) <-> E. b E. c ( c e. v /\ v R b ) ) |
| 12 | 8 11 | sylib | |- ( v e. dom ( R |X. ( `' _E |` A ) ) -> E. b E. c ( c e. v /\ v R b ) ) |
| 13 | 12 | anim1ci | |- ( ( v e. dom ( R |X. ( `' _E |` A ) ) /\ u = [ v ] ( R |X. ( `' _E |` A ) ) ) -> ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ E. b E. c ( c e. v /\ v R b ) ) ) |
| 14 | 3anass | |- ( ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ c e. v /\ v R b ) <-> ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ ( c e. v /\ v R b ) ) ) |
|
| 15 | 14 | 2exbii | |- ( E. b E. c ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ c e. v /\ v R b ) <-> E. b E. c ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ ( c e. v /\ v R b ) ) ) |
| 16 | 19.42vv | |- ( E. b E. c ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ ( c e. v /\ v R b ) ) <-> ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ E. b E. c ( c e. v /\ v R b ) ) ) |
|
| 17 | 15 16 | sylbbr | |- ( ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ E. b E. c ( c e. v /\ v R b ) ) -> E. b E. c ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ c e. v /\ v R b ) ) |
| 18 | 13 17 | syl | |- ( ( v e. dom ( R |X. ( `' _E |` A ) ) /\ u = [ v ] ( R |X. ( `' _E |` A ) ) ) -> E. b E. c ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ c e. v /\ v R b ) ) |
| 19 | 18 | reximi | |- ( E. v e. dom ( R |X. ( `' _E |` A ) ) ( v e. dom ( R |X. ( `' _E |` A ) ) /\ u = [ v ] ( R |X. ( `' _E |` A ) ) ) -> E. v e. dom ( R |X. ( `' _E |` A ) ) E. b E. c ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ c e. v /\ v R b ) ) |
| 20 | 4 19 | sylbir | |- ( E. v e. dom ( R |X. ( `' _E |` A ) ) u = [ v ] ( R |X. ( `' _E |` A ) ) -> E. v e. dom ( R |X. ( `' _E |` A ) ) E. b E. c ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ c e. v /\ v R b ) ) |
| 21 | 20 | ralimi | |- ( A. u e. A E. v e. dom ( R |X. ( `' _E |` A ) ) u = [ v ] ( R |X. ( `' _E |` A ) ) -> A. u e. A E. v e. dom ( R |X. ( `' _E |` A ) ) E. b E. c ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ c e. v /\ v R b ) ) |
| 22 | 3 21 | syl | |- ( ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) = A -> A. u e. A E. v e. dom ( R |X. ( `' _E |` A ) ) E. b E. c ( u = [ v ] ( R |X. ( `' _E |` A ) ) /\ c e. v /\ v R b ) ) |