This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcmpt.1 | |- F = ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) |
|
| pcmpt.2 | |- ( ph -> A. n e. Prime A e. NN0 ) |
||
| pcmpt.3 | |- ( ph -> N e. NN ) |
||
| pcmptdvds.3 | |- ( ph -> M e. ( ZZ>= ` N ) ) |
||
| Assertion | pcmptdvds | |- ( ph -> ( seq 1 ( x. , F ) ` N ) || ( seq 1 ( x. , F ) ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcmpt.1 | |- F = ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) |
|
| 2 | pcmpt.2 | |- ( ph -> A. n e. Prime A e. NN0 ) |
|
| 3 | pcmpt.3 | |- ( ph -> N e. NN ) |
|
| 4 | pcmptdvds.3 | |- ( ph -> M e. ( ZZ>= ` N ) ) |
|
| 5 | nfv | |- F/ m A e. NN0 |
|
| 6 | nfcsb1v | |- F/_ n [_ m / n ]_ A |
|
| 7 | 6 | nfel1 | |- F/ n [_ m / n ]_ A e. NN0 |
| 8 | csbeq1a | |- ( n = m -> A = [_ m / n ]_ A ) |
|
| 9 | 8 | eleq1d | |- ( n = m -> ( A e. NN0 <-> [_ m / n ]_ A e. NN0 ) ) |
| 10 | 5 7 9 | cbvralw | |- ( A. n e. Prime A e. NN0 <-> A. m e. Prime [_ m / n ]_ A e. NN0 ) |
| 11 | 2 10 | sylib | |- ( ph -> A. m e. Prime [_ m / n ]_ A e. NN0 ) |
| 12 | csbeq1 | |- ( m = p -> [_ m / n ]_ A = [_ p / n ]_ A ) |
|
| 13 | 12 | eleq1d | |- ( m = p -> ( [_ m / n ]_ A e. NN0 <-> [_ p / n ]_ A e. NN0 ) ) |
| 14 | 13 | rspcv | |- ( p e. Prime -> ( A. m e. Prime [_ m / n ]_ A e. NN0 -> [_ p / n ]_ A e. NN0 ) ) |
| 15 | 11 14 | mpan9 | |- ( ( ph /\ p e. Prime ) -> [_ p / n ]_ A e. NN0 ) |
| 16 | 15 | nn0ge0d | |- ( ( ph /\ p e. Prime ) -> 0 <_ [_ p / n ]_ A ) |
| 17 | 0le0 | |- 0 <_ 0 |
|
| 18 | breq2 | |- ( [_ p / n ]_ A = if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) -> ( 0 <_ [_ p / n ]_ A <-> 0 <_ if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) ) ) |
|
| 19 | breq2 | |- ( 0 = if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) -> ( 0 <_ 0 <-> 0 <_ if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) ) ) |
|
| 20 | 18 19 | ifboth | |- ( ( 0 <_ [_ p / n ]_ A /\ 0 <_ 0 ) -> 0 <_ if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) ) |
| 21 | 16 17 20 | sylancl | |- ( ( ph /\ p e. Prime ) -> 0 <_ if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) ) |
| 22 | nfcv | |- F/_ m if ( n e. Prime , ( n ^ A ) , 1 ) |
|
| 23 | nfv | |- F/ n m e. Prime |
|
| 24 | nfcv | |- F/_ n m |
|
| 25 | nfcv | |- F/_ n ^ |
|
| 26 | 24 25 6 | nfov | |- F/_ n ( m ^ [_ m / n ]_ A ) |
| 27 | nfcv | |- F/_ n 1 |
|
| 28 | 23 26 27 | nfif | |- F/_ n if ( m e. Prime , ( m ^ [_ m / n ]_ A ) , 1 ) |
| 29 | eleq1w | |- ( n = m -> ( n e. Prime <-> m e. Prime ) ) |
|
| 30 | id | |- ( n = m -> n = m ) |
|
| 31 | 30 8 | oveq12d | |- ( n = m -> ( n ^ A ) = ( m ^ [_ m / n ]_ A ) ) |
| 32 | 29 31 | ifbieq1d | |- ( n = m -> if ( n e. Prime , ( n ^ A ) , 1 ) = if ( m e. Prime , ( m ^ [_ m / n ]_ A ) , 1 ) ) |
| 33 | 22 28 32 | cbvmpt | |- ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) = ( m e. NN |-> if ( m e. Prime , ( m ^ [_ m / n ]_ A ) , 1 ) ) |
| 34 | 1 33 | eqtri | |- F = ( m e. NN |-> if ( m e. Prime , ( m ^ [_ m / n ]_ A ) , 1 ) ) |
| 35 | 11 | adantr | |- ( ( ph /\ p e. Prime ) -> A. m e. Prime [_ m / n ]_ A e. NN0 ) |
| 36 | 3 | adantr | |- ( ( ph /\ p e. Prime ) -> N e. NN ) |
| 37 | simpr | |- ( ( ph /\ p e. Prime ) -> p e. Prime ) |
|
| 38 | 4 | adantr | |- ( ( ph /\ p e. Prime ) -> M e. ( ZZ>= ` N ) ) |
| 39 | 34 35 36 37 12 38 | pcmpt2 | |- ( ( ph /\ p e. Prime ) -> ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) = if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) ) |
| 40 | 21 39 | breqtrrd | |- ( ( ph /\ p e. Prime ) -> 0 <_ ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) ) |
| 41 | 40 | ralrimiva | |- ( ph -> A. p e. Prime 0 <_ ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) ) |
| 42 | 1 2 | pcmptcl | |- ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |
| 43 | 42 | simprd | |- ( ph -> seq 1 ( x. , F ) : NN --> NN ) |
| 44 | eluznn | |- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> M e. NN ) |
|
| 45 | 3 4 44 | syl2anc | |- ( ph -> M e. NN ) |
| 46 | 43 45 | ffvelcdmd | |- ( ph -> ( seq 1 ( x. , F ) ` M ) e. NN ) |
| 47 | 46 | nnzd | |- ( ph -> ( seq 1 ( x. , F ) ` M ) e. ZZ ) |
| 48 | 43 3 | ffvelcdmd | |- ( ph -> ( seq 1 ( x. , F ) ` N ) e. NN ) |
| 49 | znq | |- ( ( ( seq 1 ( x. , F ) ` M ) e. ZZ /\ ( seq 1 ( x. , F ) ` N ) e. NN ) -> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. QQ ) |
|
| 50 | 47 48 49 | syl2anc | |- ( ph -> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. QQ ) |
| 51 | pcz | |- ( ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. QQ -> ( ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ <-> A. p e. Prime 0 <_ ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) ) ) |
|
| 52 | 50 51 | syl | |- ( ph -> ( ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ <-> A. p e. Prime 0 <_ ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) ) ) |
| 53 | 41 52 | mpbird | |- ( ph -> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ ) |
| 54 | 48 | nnzd | |- ( ph -> ( seq 1 ( x. , F ) ` N ) e. ZZ ) |
| 55 | 48 | nnne0d | |- ( ph -> ( seq 1 ( x. , F ) ` N ) =/= 0 ) |
| 56 | dvdsval2 | |- ( ( ( seq 1 ( x. , F ) ` N ) e. ZZ /\ ( seq 1 ( x. , F ) ` N ) =/= 0 /\ ( seq 1 ( x. , F ) ` M ) e. ZZ ) -> ( ( seq 1 ( x. , F ) ` N ) || ( seq 1 ( x. , F ) ` M ) <-> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ ) ) |
|
| 57 | 54 55 47 56 | syl3anc | |- ( ph -> ( ( seq 1 ( x. , F ) ` N ) || ( seq 1 ( x. , F ) ` M ) <-> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ ) ) |
| 58 | 53 57 | mpbird | |- ( ph -> ( seq 1 ( x. , F ) ` N ) || ( seq 1 ( x. , F ) ` M ) ) |