This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposfun | |- ( Fun F -> Fun tpos F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt | |- Fun ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) |
|
| 2 | funco | |- ( ( Fun F /\ Fun ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) -> Fun ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( Fun F -> Fun ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) ) |
| 4 | df-tpos | |- tpos F = ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) |
|
| 5 | 4 | funeqi | |- ( Fun tpos F <-> Fun ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) ) |
| 6 | 3 5 | sylibr | |- ( Fun F -> Fun tpos F ) |