This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpodf.1 | |- ( ph -> A e. C ) |
|
| ovmpodf.2 | |- ( ( ph /\ x = A ) -> B e. D ) |
||
| ovmpodf.3 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R e. V ) |
||
| ovmpodf.4 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = R -> ps ) ) |
||
| ovmpodf.5 | |- F/_ x F |
||
| ovmpodf.6 | |- F/ x ps |
||
| ovmpodf.7 | |- F/_ y F |
||
| ovmpodf.8 | |- F/ y ps |
||
| Assertion | ovmpodf | |- ( ph -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpodf.1 | |- ( ph -> A e. C ) |
|
| 2 | ovmpodf.2 | |- ( ( ph /\ x = A ) -> B e. D ) |
|
| 3 | ovmpodf.3 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R e. V ) |
|
| 4 | ovmpodf.4 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = R -> ps ) ) |
|
| 5 | ovmpodf.5 | |- F/_ x F |
|
| 6 | ovmpodf.6 | |- F/ x ps |
|
| 7 | ovmpodf.7 | |- F/_ y F |
|
| 8 | ovmpodf.8 | |- F/ y ps |
|
| 9 | nfv | |- F/ x ph |
|
| 10 | nfmpo1 | |- F/_ x ( x e. C , y e. D |-> R ) |
|
| 11 | 5 10 | nfeq | |- F/ x F = ( x e. C , y e. D |-> R ) |
| 12 | 11 6 | nfim | |- F/ x ( F = ( x e. C , y e. D |-> R ) -> ps ) |
| 13 | 1 | elexd | |- ( ph -> A e. _V ) |
| 14 | isset | |- ( A e. _V <-> E. x x = A ) |
|
| 15 | 13 14 | sylib | |- ( ph -> E. x x = A ) |
| 16 | nfv | |- F/ y ( ph /\ x = A ) |
|
| 17 | nfmpo2 | |- F/_ y ( x e. C , y e. D |-> R ) |
|
| 18 | 7 17 | nfeq | |- F/ y F = ( x e. C , y e. D |-> R ) |
| 19 | 18 8 | nfim | |- F/ y ( F = ( x e. C , y e. D |-> R ) -> ps ) |
| 20 | 2 | elexd | |- ( ( ph /\ x = A ) -> B e. _V ) |
| 21 | isset | |- ( B e. _V <-> E. y y = B ) |
|
| 22 | 20 21 | sylib | |- ( ( ph /\ x = A ) -> E. y y = B ) |
| 23 | oveq | |- ( F = ( x e. C , y e. D |-> R ) -> ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) ) |
|
| 24 | simprl | |- ( ( ph /\ ( x = A /\ y = B ) ) -> x = A ) |
|
| 25 | simprr | |- ( ( ph /\ ( x = A /\ y = B ) ) -> y = B ) |
|
| 26 | 24 25 | oveq12d | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( x ( x e. C , y e. D |-> R ) y ) = ( A ( x e. C , y e. D |-> R ) B ) ) |
| 27 | 1 | adantr | |- ( ( ph /\ ( x = A /\ y = B ) ) -> A e. C ) |
| 28 | 24 27 | eqeltrd | |- ( ( ph /\ ( x = A /\ y = B ) ) -> x e. C ) |
| 29 | 2 | adantrr | |- ( ( ph /\ ( x = A /\ y = B ) ) -> B e. D ) |
| 30 | 25 29 | eqeltrd | |- ( ( ph /\ ( x = A /\ y = B ) ) -> y e. D ) |
| 31 | eqid | |- ( x e. C , y e. D |-> R ) = ( x e. C , y e. D |-> R ) |
|
| 32 | 31 | ovmpt4g | |- ( ( x e. C /\ y e. D /\ R e. V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) |
| 33 | 28 30 3 32 | syl3anc | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) |
| 34 | 26 33 | eqtr3d | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( A ( x e. C , y e. D |-> R ) B ) = R ) |
| 35 | 34 | eqeq2d | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) <-> ( A F B ) = R ) ) |
| 36 | 35 4 | sylbid | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) -> ps ) ) |
| 37 | 23 36 | syl5 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) |
| 38 | 37 | expr | |- ( ( ph /\ x = A ) -> ( y = B -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) ) |
| 39 | 16 19 22 38 | exlimimdd | |- ( ( ph /\ x = A ) -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) |
| 40 | 9 12 15 39 | exlimdd | |- ( ph -> ( F = ( x e. C , y e. D |-> R ) -> ps ) ) |