This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ov6g.1 | |- ( <. x , y >. = <. A , B >. -> R = S ) |
|
| ov6g.2 | |- F = { <. <. x , y >. , z >. | ( <. x , y >. e. C /\ z = R ) } |
||
| Assertion | ov6g | |- ( ( ( A e. G /\ B e. H /\ <. A , B >. e. C ) /\ S e. J ) -> ( A F B ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ov6g.1 | |- ( <. x , y >. = <. A , B >. -> R = S ) |
|
| 2 | ov6g.2 | |- F = { <. <. x , y >. , z >. | ( <. x , y >. e. C /\ z = R ) } |
|
| 3 | df-ov | |- ( A F B ) = ( F ` <. A , B >. ) |
|
| 4 | eqid | |- S = S |
|
| 5 | biidd | |- ( ( x = A /\ y = B ) -> ( S = S <-> S = S ) ) |
|
| 6 | 5 | copsex2g | |- ( ( A e. G /\ B e. H ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ S = S ) <-> S = S ) ) |
| 7 | 4 6 | mpbiri | |- ( ( A e. G /\ B e. H ) -> E. x E. y ( <. A , B >. = <. x , y >. /\ S = S ) ) |
| 8 | 7 | 3adant3 | |- ( ( A e. G /\ B e. H /\ <. A , B >. e. C ) -> E. x E. y ( <. A , B >. = <. x , y >. /\ S = S ) ) |
| 9 | 8 | adantr | |- ( ( ( A e. G /\ B e. H /\ <. A , B >. e. C ) /\ S e. J ) -> E. x E. y ( <. A , B >. = <. x , y >. /\ S = S ) ) |
| 10 | eqeq1 | |- ( w = <. A , B >. -> ( w = <. x , y >. <-> <. A , B >. = <. x , y >. ) ) |
|
| 11 | 10 | anbi1d | |- ( w = <. A , B >. -> ( ( w = <. x , y >. /\ z = R ) <-> ( <. A , B >. = <. x , y >. /\ z = R ) ) ) |
| 12 | 1 | eqeq2d | |- ( <. x , y >. = <. A , B >. -> ( z = R <-> z = S ) ) |
| 13 | 12 | eqcoms | |- ( <. A , B >. = <. x , y >. -> ( z = R <-> z = S ) ) |
| 14 | 13 | pm5.32i | |- ( ( <. A , B >. = <. x , y >. /\ z = R ) <-> ( <. A , B >. = <. x , y >. /\ z = S ) ) |
| 15 | 11 14 | bitrdi | |- ( w = <. A , B >. -> ( ( w = <. x , y >. /\ z = R ) <-> ( <. A , B >. = <. x , y >. /\ z = S ) ) ) |
| 16 | 15 | 2exbidv | |- ( w = <. A , B >. -> ( E. x E. y ( w = <. x , y >. /\ z = R ) <-> E. x E. y ( <. A , B >. = <. x , y >. /\ z = S ) ) ) |
| 17 | eqeq1 | |- ( z = S -> ( z = S <-> S = S ) ) |
|
| 18 | 17 | anbi2d | |- ( z = S -> ( ( <. A , B >. = <. x , y >. /\ z = S ) <-> ( <. A , B >. = <. x , y >. /\ S = S ) ) ) |
| 19 | 18 | 2exbidv | |- ( z = S -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ z = S ) <-> E. x E. y ( <. A , B >. = <. x , y >. /\ S = S ) ) ) |
| 20 | moeq | |- E* z z = R |
|
| 21 | 20 | mosubop | |- E* z E. x E. y ( w = <. x , y >. /\ z = R ) |
| 22 | 21 | a1i | |- ( w e. C -> E* z E. x E. y ( w = <. x , y >. /\ z = R ) ) |
| 23 | dfoprab2 | |- { <. <. x , y >. , z >. | ( <. x , y >. e. C /\ z = R ) } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ( <. x , y >. e. C /\ z = R ) ) } |
|
| 24 | eleq1 | |- ( w = <. x , y >. -> ( w e. C <-> <. x , y >. e. C ) ) |
|
| 25 | 24 | anbi1d | |- ( w = <. x , y >. -> ( ( w e. C /\ z = R ) <-> ( <. x , y >. e. C /\ z = R ) ) ) |
| 26 | 25 | pm5.32i | |- ( ( w = <. x , y >. /\ ( w e. C /\ z = R ) ) <-> ( w = <. x , y >. /\ ( <. x , y >. e. C /\ z = R ) ) ) |
| 27 | an12 | |- ( ( w = <. x , y >. /\ ( w e. C /\ z = R ) ) <-> ( w e. C /\ ( w = <. x , y >. /\ z = R ) ) ) |
|
| 28 | 26 27 | bitr3i | |- ( ( w = <. x , y >. /\ ( <. x , y >. e. C /\ z = R ) ) <-> ( w e. C /\ ( w = <. x , y >. /\ z = R ) ) ) |
| 29 | 28 | 2exbii | |- ( E. x E. y ( w = <. x , y >. /\ ( <. x , y >. e. C /\ z = R ) ) <-> E. x E. y ( w e. C /\ ( w = <. x , y >. /\ z = R ) ) ) |
| 30 | 19.42vv | |- ( E. x E. y ( w e. C /\ ( w = <. x , y >. /\ z = R ) ) <-> ( w e. C /\ E. x E. y ( w = <. x , y >. /\ z = R ) ) ) |
|
| 31 | 29 30 | bitri | |- ( E. x E. y ( w = <. x , y >. /\ ( <. x , y >. e. C /\ z = R ) ) <-> ( w e. C /\ E. x E. y ( w = <. x , y >. /\ z = R ) ) ) |
| 32 | 31 | opabbii | |- { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ( <. x , y >. e. C /\ z = R ) ) } = { <. w , z >. | ( w e. C /\ E. x E. y ( w = <. x , y >. /\ z = R ) ) } |
| 33 | 2 23 32 | 3eqtri | |- F = { <. w , z >. | ( w e. C /\ E. x E. y ( w = <. x , y >. /\ z = R ) ) } |
| 34 | 16 19 22 33 | fvopab3ig | |- ( ( <. A , B >. e. C /\ S e. J ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ S = S ) -> ( F ` <. A , B >. ) = S ) ) |
| 35 | 34 | 3ad2antl3 | |- ( ( ( A e. G /\ B e. H /\ <. A , B >. e. C ) /\ S e. J ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ S = S ) -> ( F ` <. A , B >. ) = S ) ) |
| 36 | 9 35 | mpd | |- ( ( ( A e. G /\ B e. H /\ <. A , B >. e. C ) /\ S e. J ) -> ( F ` <. A , B >. ) = S ) |
| 37 | 3 36 | eqtrid | |- ( ( ( A e. G /\ B e. H /\ <. A , B >. e. C ) /\ S e. J ) -> ( A F B ) = S ) |