This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 28-May-1995) (Revised by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ov3.1 | |- S e. _V |
|
| ov3.2 | |- ( ( ( w = A /\ v = B ) /\ ( u = C /\ f = D ) ) -> R = S ) |
||
| ov3.3 | |- F = { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
||
| Assertion | ov3 | |- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( <. A , B >. F <. C , D >. ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ov3.1 | |- S e. _V |
|
| 2 | ov3.2 | |- ( ( ( w = A /\ v = B ) /\ ( u = C /\ f = D ) ) -> R = S ) |
|
| 3 | ov3.3 | |- F = { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
|
| 4 | 1 | isseti | |- E. z z = S |
| 5 | nfv | |- F/ z ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) |
|
| 6 | nfcv | |- F/_ z <. A , B >. |
|
| 7 | nfoprab3 | |- F/_ z { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
|
| 8 | 3 7 | nfcxfr | |- F/_ z F |
| 9 | nfcv | |- F/_ z <. C , D >. |
|
| 10 | 6 8 9 | nfov | |- F/_ z ( <. A , B >. F <. C , D >. ) |
| 11 | 10 | nfeq1 | |- F/ z ( <. A , B >. F <. C , D >. ) = S |
| 12 | 2 | eqeq2d | |- ( ( ( w = A /\ v = B ) /\ ( u = C /\ f = D ) ) -> ( z = R <-> z = S ) ) |
| 13 | 12 | copsex4g | |- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) <-> z = S ) ) |
| 14 | opelxpi | |- ( ( A e. H /\ B e. H ) -> <. A , B >. e. ( H X. H ) ) |
|
| 15 | opelxpi | |- ( ( C e. H /\ D e. H ) -> <. C , D >. e. ( H X. H ) ) |
|
| 16 | nfcv | |- F/_ x <. A , B >. |
|
| 17 | nfcv | |- F/_ y <. A , B >. |
|
| 18 | nfcv | |- F/_ y <. C , D >. |
|
| 19 | nfv | |- F/ x E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) |
|
| 20 | nfoprab1 | |- F/_ x { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
|
| 21 | 3 20 | nfcxfr | |- F/_ x F |
| 22 | nfcv | |- F/_ x y |
|
| 23 | 16 21 22 | nfov | |- F/_ x ( <. A , B >. F y ) |
| 24 | 23 | nfeq1 | |- F/ x ( <. A , B >. F y ) = z |
| 25 | 19 24 | nfim | |- F/ x ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F y ) = z ) |
| 26 | nfv | |- F/ y E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) |
|
| 27 | nfoprab2 | |- F/_ y { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
|
| 28 | 3 27 | nfcxfr | |- F/_ y F |
| 29 | 17 28 18 | nfov | |- F/_ y ( <. A , B >. F <. C , D >. ) |
| 30 | 29 | nfeq1 | |- F/ y ( <. A , B >. F <. C , D >. ) = z |
| 31 | 26 30 | nfim | |- F/ y ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F <. C , D >. ) = z ) |
| 32 | eqeq1 | |- ( x = <. A , B >. -> ( x = <. w , v >. <-> <. A , B >. = <. w , v >. ) ) |
|
| 33 | 32 | anbi1d | |- ( x = <. A , B >. -> ( ( x = <. w , v >. /\ y = <. u , f >. ) <-> ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) ) ) |
| 34 | 33 | anbi1d | |- ( x = <. A , B >. -> ( ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) ) |
| 35 | 34 | 4exbidv | |- ( x = <. A , B >. -> ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) ) |
| 36 | oveq1 | |- ( x = <. A , B >. -> ( x F y ) = ( <. A , B >. F y ) ) |
|
| 37 | 36 | eqeq1d | |- ( x = <. A , B >. -> ( ( x F y ) = z <-> ( <. A , B >. F y ) = z ) ) |
| 38 | 35 37 | imbi12d | |- ( x = <. A , B >. -> ( ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( x F y ) = z ) <-> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F y ) = z ) ) ) |
| 39 | eqeq1 | |- ( y = <. C , D >. -> ( y = <. u , f >. <-> <. C , D >. = <. u , f >. ) ) |
|
| 40 | 39 | anbi2d | |- ( y = <. C , D >. -> ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) <-> ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) ) ) |
| 41 | 40 | anbi1d | |- ( y = <. C , D >. -> ( ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) ) ) |
| 42 | 41 | 4exbidv | |- ( y = <. C , D >. -> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) ) ) |
| 43 | oveq2 | |- ( y = <. C , D >. -> ( <. A , B >. F y ) = ( <. A , B >. F <. C , D >. ) ) |
|
| 44 | 43 | eqeq1d | |- ( y = <. C , D >. -> ( ( <. A , B >. F y ) = z <-> ( <. A , B >. F <. C , D >. ) = z ) ) |
| 45 | 42 44 | imbi12d | |- ( y = <. C , D >. -> ( ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F y ) = z ) <-> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F <. C , D >. ) = z ) ) ) |
| 46 | moeq | |- E* z z = R |
|
| 47 | 46 | mosubop | |- E* z E. u E. f ( y = <. u , f >. /\ z = R ) |
| 48 | 47 | mosubop | |- E* z E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) |
| 49 | anass | |- ( ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = R ) ) ) |
|
| 50 | 49 | 2exbii | |- ( E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. u E. f ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = R ) ) ) |
| 51 | 19.42vv | |- ( E. u E. f ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = R ) ) <-> ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
|
| 52 | 50 51 | bitri | |- ( E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
| 53 | 52 | 2exbii | |- ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
| 54 | 53 | mobii | |- ( E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E* z E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
| 55 | 48 54 | mpbir | |- E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) |
| 56 | 55 | a1i | |- ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) -> E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) |
| 57 | 56 3 | ovidi | |- ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) -> ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) -> ( x F y ) = z ) ) |
| 58 | 16 17 18 25 31 38 45 57 | vtocl2gaf | |- ( ( <. A , B >. e. ( H X. H ) /\ <. C , D >. e. ( H X. H ) ) -> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F <. C , D >. ) = z ) ) |
| 59 | 14 15 58 | syl2an | |- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( E. w E. v E. u E. f ( ( <. A , B >. = <. w , v >. /\ <. C , D >. = <. u , f >. ) /\ z = R ) -> ( <. A , B >. F <. C , D >. ) = z ) ) |
| 60 | 13 59 | sylbird | |- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( z = S -> ( <. A , B >. F <. C , D >. ) = z ) ) |
| 61 | eqeq2 | |- ( z = S -> ( ( <. A , B >. F <. C , D >. ) = z <-> ( <. A , B >. F <. C , D >. ) = S ) ) |
|
| 62 | 60 61 | mpbidi | |- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( z = S -> ( <. A , B >. F <. C , D >. ) = S ) ) |
| 63 | 5 11 62 | exlimd | |- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( E. z z = S -> ( <. A , B >. F <. C , D >. ) = S ) ) |
| 64 | 4 63 | mpi | |- ( ( ( A e. H /\ B e. H ) /\ ( C e. H /\ D e. H ) ) -> ( <. A , B >. F <. C , D >. ) = S ) |