This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | copsex4g.1 | |- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> ( ph <-> ps ) ) |
|
| Assertion | copsex4g | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ( <. A , B >. = <. x , y >. /\ <. C , D >. = <. z , w >. ) /\ ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | copsex4g.1 | |- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> ( ph <-> ps ) ) |
|
| 2 | eqcom | |- ( <. A , B >. = <. x , y >. <-> <. x , y >. = <. A , B >. ) |
|
| 3 | vex | |- x e. _V |
|
| 4 | vex | |- y e. _V |
|
| 5 | 3 4 | opth | |- ( <. x , y >. = <. A , B >. <-> ( x = A /\ y = B ) ) |
| 6 | 2 5 | bitri | |- ( <. A , B >. = <. x , y >. <-> ( x = A /\ y = B ) ) |
| 7 | eqcom | |- ( <. C , D >. = <. z , w >. <-> <. z , w >. = <. C , D >. ) |
|
| 8 | vex | |- z e. _V |
|
| 9 | vex | |- w e. _V |
|
| 10 | 8 9 | opth | |- ( <. z , w >. = <. C , D >. <-> ( z = C /\ w = D ) ) |
| 11 | 7 10 | bitri | |- ( <. C , D >. = <. z , w >. <-> ( z = C /\ w = D ) ) |
| 12 | 6 11 | anbi12i | |- ( ( <. A , B >. = <. x , y >. /\ <. C , D >. = <. z , w >. ) <-> ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) ) |
| 13 | 12 | anbi1i | |- ( ( ( <. A , B >. = <. x , y >. /\ <. C , D >. = <. z , w >. ) /\ ph ) <-> ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) /\ ph ) ) |
| 14 | 13 | a1i | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( ( ( <. A , B >. = <. x , y >. /\ <. C , D >. = <. z , w >. ) /\ ph ) <-> ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) /\ ph ) ) ) |
| 15 | 14 | 4exbidv | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ( <. A , B >. = <. x , y >. /\ <. C , D >. = <. z , w >. ) /\ ph ) <-> E. x E. y E. z E. w ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) /\ ph ) ) ) |
| 16 | id | |- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) -> ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) ) |
|
| 17 | 16 1 | cgsex4g | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) ) /\ ph ) <-> ps ) ) |
| 18 | 15 17 | bitrd | |- ( ( ( A e. R /\ B e. S ) /\ ( C e. R /\ D e. S ) ) -> ( E. x E. y E. z E. w ( ( <. A , B >. = <. x , y >. /\ <. C , D >. = <. z , w >. ) /\ ph ) <-> ps ) ) |