This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | otel3xp | |- ( ( T = <. A , B , C >. /\ ( A e. X /\ B e. Y /\ C e. Z ) ) -> T e. ( ( X X. Y ) X. Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot | |- <. A , B , C >. = <. <. A , B >. , C >. |
|
| 2 | 3simpa | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( A e. X /\ B e. Y ) ) |
|
| 3 | opelxp | |- ( <. A , B >. e. ( X X. Y ) <-> ( A e. X /\ B e. Y ) ) |
|
| 4 | 2 3 | sylibr | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> <. A , B >. e. ( X X. Y ) ) |
| 5 | simp3 | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> C e. Z ) |
|
| 6 | 4 5 | opelxpd | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> <. <. A , B >. , C >. e. ( ( X X. Y ) X. Z ) ) |
| 7 | 1 6 | eqeltrid | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> <. A , B , C >. e. ( ( X X. Y ) X. Z ) ) |
| 8 | eleq1 | |- ( T = <. A , B , C >. -> ( T e. ( ( X X. Y ) X. Z ) <-> <. A , B , C >. e. ( ( X X. Y ) X. Z ) ) ) |
|
| 9 | 7 8 | imbitrrid | |- ( T = <. A , B , C >. -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> T e. ( ( X X. Y ) X. Z ) ) ) |
| 10 | 9 | imp | |- ( ( T = <. A , B , C >. /\ ( A e. X /\ B e. Y /\ C e. Z ) ) -> T e. ( ( X X. Y ) X. Z ) ) |