This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | otel3xp | ⊢ ( ( 𝑇 = 〈 𝐴 , 𝐵 , 𝐶 〉 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) → 𝑇 ∈ ( ( 𝑋 × 𝑌 ) × 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot | ⊢ 〈 𝐴 , 𝐵 , 𝐶 〉 = 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 | |
| 2 | 3simpa | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) | |
| 3 | opelxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) | |
| 4 | 2 3 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 5 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 ∈ 𝑍 ) | |
| 6 | 4 5 | opelxpd | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ ( ( 𝑋 × 𝑌 ) × 𝑍 ) ) |
| 7 | 1 6 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 〈 𝐴 , 𝐵 , 𝐶 〉 ∈ ( ( 𝑋 × 𝑌 ) × 𝑍 ) ) |
| 8 | eleq1 | ⊢ ( 𝑇 = 〈 𝐴 , 𝐵 , 𝐶 〉 → ( 𝑇 ∈ ( ( 𝑋 × 𝑌 ) × 𝑍 ) ↔ 〈 𝐴 , 𝐵 , 𝐶 〉 ∈ ( ( 𝑋 × 𝑌 ) × 𝑍 ) ) ) | |
| 9 | 7 8 | imbitrrid | ⊢ ( 𝑇 = 〈 𝐴 , 𝐵 , 𝐶 〉 → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝑇 ∈ ( ( 𝑋 × 𝑌 ) × 𝑍 ) ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝑇 = 〈 𝐴 , 𝐵 , 𝐶 〉 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) → 𝑇 ∈ ( ( 𝑋 × 𝑌 ) × 𝑍 ) ) |