This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two closed subspaces of a Hilbert space are orthogonal, their subspace sum equals their subspace join. Lemma 3 of Kalmbach p. 67. (Contributed by NM, 31-Oct-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | osum | |- ( ( A e. CH /\ B e. CH /\ A C_ ( _|_ ` B ) ) -> ( A +H B ) = ( A vH B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | |- ( A = if ( A e. CH , A , ~H ) -> ( A C_ ( _|_ ` B ) <-> if ( A e. CH , A , ~H ) C_ ( _|_ ` B ) ) ) |
|
| 2 | oveq1 | |- ( A = if ( A e. CH , A , ~H ) -> ( A +H B ) = ( if ( A e. CH , A , ~H ) +H B ) ) |
|
| 3 | oveq1 | |- ( A = if ( A e. CH , A , ~H ) -> ( A vH B ) = ( if ( A e. CH , A , ~H ) vH B ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( A +H B ) = ( A vH B ) <-> ( if ( A e. CH , A , ~H ) +H B ) = ( if ( A e. CH , A , ~H ) vH B ) ) ) |
| 5 | 1 4 | imbi12d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( A C_ ( _|_ ` B ) -> ( A +H B ) = ( A vH B ) ) <-> ( if ( A e. CH , A , ~H ) C_ ( _|_ ` B ) -> ( if ( A e. CH , A , ~H ) +H B ) = ( if ( A e. CH , A , ~H ) vH B ) ) ) ) |
| 6 | fveq2 | |- ( B = if ( B e. CH , B , ~H ) -> ( _|_ ` B ) = ( _|_ ` if ( B e. CH , B , ~H ) ) ) |
|
| 7 | 6 | sseq2d | |- ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H ) C_ ( _|_ ` B ) <-> if ( A e. CH , A , ~H ) C_ ( _|_ ` if ( B e. CH , B , ~H ) ) ) ) |
| 8 | oveq2 | |- ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H ) +H B ) = ( if ( A e. CH , A , ~H ) +H if ( B e. CH , B , ~H ) ) ) |
|
| 9 | oveq2 | |- ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H ) vH B ) = ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) ) |
|
| 10 | 8 9 | eqeq12d | |- ( B = if ( B e. CH , B , ~H ) -> ( ( if ( A e. CH , A , ~H ) +H B ) = ( if ( A e. CH , A , ~H ) vH B ) <-> ( if ( A e. CH , A , ~H ) +H if ( B e. CH , B , ~H ) ) = ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) ) ) |
| 11 | 7 10 | imbi12d | |- ( B = if ( B e. CH , B , ~H ) -> ( ( if ( A e. CH , A , ~H ) C_ ( _|_ ` B ) -> ( if ( A e. CH , A , ~H ) +H B ) = ( if ( A e. CH , A , ~H ) vH B ) ) <-> ( if ( A e. CH , A , ~H ) C_ ( _|_ ` if ( B e. CH , B , ~H ) ) -> ( if ( A e. CH , A , ~H ) +H if ( B e. CH , B , ~H ) ) = ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) ) ) ) |
| 12 | ifchhv | |- if ( A e. CH , A , ~H ) e. CH |
|
| 13 | ifchhv | |- if ( B e. CH , B , ~H ) e. CH |
|
| 14 | 12 13 | osumi | |- ( if ( A e. CH , A , ~H ) C_ ( _|_ ` if ( B e. CH , B , ~H ) ) -> ( if ( A e. CH , A , ~H ) +H if ( B e. CH , B , ~H ) ) = ( if ( A e. CH , A , ~H ) vH if ( B e. CH , B , ~H ) ) ) |
| 15 | 5 11 14 | dedth2h | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ ( _|_ ` B ) -> ( A +H B ) = ( A vH B ) ) ) |
| 16 | 15 | 3impia | |- ( ( A e. CH /\ B e. CH /\ A C_ ( _|_ ` B ) ) -> ( A +H B ) = ( A vH B ) ) |