This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunpr | |- ( ( B e. On /\ C e. On ) -> ( B u. C ) e. { B , C } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | |- ( B e. On -> Ord B ) |
|
| 2 | eloni | |- ( C e. On -> Ord C ) |
|
| 3 | ordtri2or2 | |- ( ( Ord B /\ Ord C ) -> ( B C_ C \/ C C_ B ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( B e. On /\ C e. On ) -> ( B C_ C \/ C C_ B ) ) |
| 5 | 4 | orcomd | |- ( ( B e. On /\ C e. On ) -> ( C C_ B \/ B C_ C ) ) |
| 6 | ssequn2 | |- ( C C_ B <-> ( B u. C ) = B ) |
|
| 7 | ssequn1 | |- ( B C_ C <-> ( B u. C ) = C ) |
|
| 8 | 6 7 | orbi12i | |- ( ( C C_ B \/ B C_ C ) <-> ( ( B u. C ) = B \/ ( B u. C ) = C ) ) |
| 9 | 5 8 | sylib | |- ( ( B e. On /\ C e. On ) -> ( ( B u. C ) = B \/ ( B u. C ) = C ) ) |
| 10 | unexg | |- ( ( B e. On /\ C e. On ) -> ( B u. C ) e. _V ) |
|
| 11 | elprg | |- ( ( B u. C ) e. _V -> ( ( B u. C ) e. { B , C } <-> ( ( B u. C ) = B \/ ( B u. C ) = C ) ) ) |
|
| 12 | 10 11 | syl | |- ( ( B e. On /\ C e. On ) -> ( ( B u. C ) e. { B , C } <-> ( ( B u. C ) = B \/ ( B u. C ) = C ) ) ) |
| 13 | 9 12 | mpbird | |- ( ( B e. On /\ C e. On ) -> ( B u. C ) e. { B , C } ) |