This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem orduniss

Description: An ordinal class includes its union. (Contributed by NM, 13-Sep-2003)

Ref Expression
Assertion orduniss
|- ( Ord A -> U. A C_ A )

Proof

Step Hyp Ref Expression
1 ordtr
 |-  ( Ord A -> Tr A )
2 df-tr
 |-  ( Tr A <-> U. A C_ A )
3 1 2 sylib
 |-  ( Ord A -> U. A C_ A )