This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maximum (i.e. union) of two ordinals is either one or the other. Similar to Exercise 14 of TakeutiZaring p. 40. (Contributed by NM, 28-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordequn | |- ( ( Ord B /\ Ord C ) -> ( A = ( B u. C ) -> ( A = B \/ A = C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2or2 | |- ( ( Ord B /\ Ord C ) -> ( B C_ C \/ C C_ B ) ) |
|
| 2 | 1 | orcomd | |- ( ( Ord B /\ Ord C ) -> ( C C_ B \/ B C_ C ) ) |
| 3 | ssequn2 | |- ( C C_ B <-> ( B u. C ) = B ) |
|
| 4 | eqeq1 | |- ( A = ( B u. C ) -> ( A = B <-> ( B u. C ) = B ) ) |
|
| 5 | 3 4 | bitr4id | |- ( A = ( B u. C ) -> ( C C_ B <-> A = B ) ) |
| 6 | ssequn1 | |- ( B C_ C <-> ( B u. C ) = C ) |
|
| 7 | eqeq1 | |- ( A = ( B u. C ) -> ( A = C <-> ( B u. C ) = C ) ) |
|
| 8 | 6 7 | bitr4id | |- ( A = ( B u. C ) -> ( B C_ C <-> A = C ) ) |
| 9 | 5 8 | orbi12d | |- ( A = ( B u. C ) -> ( ( C C_ B \/ B C_ C ) <-> ( A = B \/ A = C ) ) ) |
| 10 | 2 9 | syl5ibcom | |- ( ( Ord B /\ Ord C ) -> ( A = ( B u. C ) -> ( A = B \/ A = C ) ) ) |