This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *4.52 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.52 | |- ( ( ph /\ -. ps ) <-> -. ( -. ph \/ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | annim | |- ( ( ph /\ -. ps ) <-> -. ( ph -> ps ) ) |
|
| 2 | imor | |- ( ( ph -> ps ) <-> ( -. ph \/ ps ) ) |
|
| 3 | 1 2 | xchbinx | |- ( ( ph /\ -. ps ) <-> -. ( -. ph \/ ps ) ) |