This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a subclass of the maximum (i.e. union) of two ordinals. (Contributed by NM, 28-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordssun | |- ( ( Ord B /\ Ord C ) -> ( A C_ ( B u. C ) <-> ( A C_ B \/ A C_ C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2or2 | |- ( ( Ord B /\ Ord C ) -> ( B C_ C \/ C C_ B ) ) |
|
| 2 | ssequn1 | |- ( B C_ C <-> ( B u. C ) = C ) |
|
| 3 | sseq2 | |- ( ( B u. C ) = C -> ( A C_ ( B u. C ) <-> A C_ C ) ) |
|
| 4 | 2 3 | sylbi | |- ( B C_ C -> ( A C_ ( B u. C ) <-> A C_ C ) ) |
| 5 | olc | |- ( A C_ C -> ( A C_ B \/ A C_ C ) ) |
|
| 6 | 4 5 | biimtrdi | |- ( B C_ C -> ( A C_ ( B u. C ) -> ( A C_ B \/ A C_ C ) ) ) |
| 7 | ssequn2 | |- ( C C_ B <-> ( B u. C ) = B ) |
|
| 8 | sseq2 | |- ( ( B u. C ) = B -> ( A C_ ( B u. C ) <-> A C_ B ) ) |
|
| 9 | 7 8 | sylbi | |- ( C C_ B -> ( A C_ ( B u. C ) <-> A C_ B ) ) |
| 10 | orc | |- ( A C_ B -> ( A C_ B \/ A C_ C ) ) |
|
| 11 | 9 10 | biimtrdi | |- ( C C_ B -> ( A C_ ( B u. C ) -> ( A C_ B \/ A C_ C ) ) ) |
| 12 | 6 11 | jaoi | |- ( ( B C_ C \/ C C_ B ) -> ( A C_ ( B u. C ) -> ( A C_ B \/ A C_ C ) ) ) |
| 13 | 1 12 | syl | |- ( ( Ord B /\ Ord C ) -> ( A C_ ( B u. C ) -> ( A C_ B \/ A C_ C ) ) ) |
| 14 | ssun | |- ( ( A C_ B \/ A C_ C ) -> A C_ ( B u. C ) ) |
|
| 15 | 13 14 | impbid1 | |- ( ( Ord B /\ Ord C ) -> ( A C_ ( B u. C ) <-> ( A C_ B \/ A C_ C ) ) ) |