This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit ordinal contains 1. (Contributed by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1ellim | |- ( Lim A -> 1o e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlim0 | |- -. Lim (/) |
|
| 2 | limeq | |- ( A = (/) -> ( Lim A <-> Lim (/) ) ) |
|
| 3 | 1 2 | mtbiri | |- ( A = (/) -> -. Lim A ) |
| 4 | 3 | necon2ai | |- ( Lim A -> A =/= (/) ) |
| 5 | nlim1 | |- -. Lim 1o |
|
| 6 | limeq | |- ( A = 1o -> ( Lim A <-> Lim 1o ) ) |
|
| 7 | 5 6 | mtbiri | |- ( A = 1o -> -. Lim A ) |
| 8 | 7 | necon2ai | |- ( Lim A -> A =/= 1o ) |
| 9 | limord | |- ( Lim A -> Ord A ) |
|
| 10 | ord1eln01 | |- ( Ord A -> ( 1o e. A <-> ( A =/= (/) /\ A =/= 1o ) ) ) |
|
| 11 | 9 10 | syl | |- ( Lim A -> ( 1o e. A <-> ( A =/= (/) /\ A =/= 1o ) ) ) |
| 12 | 4 8 11 | mpbir2and | |- ( Lim A -> 1o e. A ) |