This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 9-Sep-2021) (Revised by AV, 1-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrbas.s | |- S = ( I mPwSer R ) |
|
| opsrbas.o | |- O = ( ( I ordPwSer R ) ` T ) |
||
| opsrbas.t | |- ( ph -> T C_ ( I X. I ) ) |
||
| opsrbaslem.1 | |- E = Slot ( E ` ndx ) |
||
| opsrbaslem.2 | |- ( E ` ndx ) =/= ( le ` ndx ) |
||
| Assertion | opsrbaslem | |- ( ph -> ( E ` S ) = ( E ` O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrbas.s | |- S = ( I mPwSer R ) |
|
| 2 | opsrbas.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| 3 | opsrbas.t | |- ( ph -> T C_ ( I X. I ) ) |
|
| 4 | opsrbaslem.1 | |- E = Slot ( E ` ndx ) |
|
| 5 | opsrbaslem.2 | |- ( E ` ndx ) =/= ( le ` ndx ) |
|
| 6 | 4 5 | setsnid | |- ( E ` S ) = ( E ` ( S sSet <. ( le ` ndx ) , ( le ` O ) >. ) ) |
| 7 | eqid | |- ( le ` O ) = ( le ` O ) |
|
| 8 | simprl | |- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> I e. _V ) |
|
| 9 | simprr | |- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> R e. _V ) |
|
| 10 | 3 | adantr | |- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> T C_ ( I X. I ) ) |
| 11 | 1 2 7 8 9 10 | opsrval2 | |- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> O = ( S sSet <. ( le ` ndx ) , ( le ` O ) >. ) ) |
| 12 | 11 | fveq2d | |- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> ( E ` O ) = ( E ` ( S sSet <. ( le ` ndx ) , ( le ` O ) >. ) ) ) |
| 13 | 6 12 | eqtr4id | |- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> ( E ` S ) = ( E ` O ) ) |
| 14 | 0fv | |- ( (/) ` T ) = (/) |
|
| 15 | 14 | eqcomi | |- (/) = ( (/) ` T ) |
| 16 | reldmpsr | |- Rel dom mPwSer |
|
| 17 | 16 | ovprc | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mPwSer R ) = (/) ) |
| 18 | reldmopsr | |- Rel dom ordPwSer |
|
| 19 | 18 | ovprc | |- ( -. ( I e. _V /\ R e. _V ) -> ( I ordPwSer R ) = (/) ) |
| 20 | 19 | fveq1d | |- ( -. ( I e. _V /\ R e. _V ) -> ( ( I ordPwSer R ) ` T ) = ( (/) ` T ) ) |
| 21 | 15 17 20 | 3eqtr4a | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mPwSer R ) = ( ( I ordPwSer R ) ` T ) ) |
| 22 | 21 1 2 | 3eqtr4g | |- ( -. ( I e. _V /\ R e. _V ) -> S = O ) |
| 23 | 22 | fveq2d | |- ( -. ( I e. _V /\ R e. _V ) -> ( E ` S ) = ( E ` O ) ) |
| 24 | 23 | adantl | |- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> ( E ` S ) = ( E ` O ) ) |
| 25 | 13 24 | pm2.61dan | |- ( ph -> ( E ` S ) = ( E ` O ) ) |