This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrring.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| opsrring.i | |- ( ph -> I e. V ) |
||
| opsrring.r | |- ( ph -> R e. Ring ) |
||
| opsrring.t | |- ( ph -> T C_ ( I X. I ) ) |
||
| Assertion | opsrlmod | |- ( ph -> O e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrring.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| 2 | opsrring.i | |- ( ph -> I e. V ) |
|
| 3 | opsrring.r | |- ( ph -> R e. Ring ) |
|
| 4 | opsrring.t | |- ( ph -> T C_ ( I X. I ) ) |
|
| 5 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 6 | 5 2 3 | psrlmod | |- ( ph -> ( I mPwSer R ) e. LMod ) |
| 7 | eqidd | |- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) ) |
|
| 8 | 5 1 4 | opsrbas | |- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` O ) ) |
| 9 | 5 1 4 | opsrplusg | |- ( ph -> ( +g ` ( I mPwSer R ) ) = ( +g ` O ) ) |
| 10 | 9 | oveqdr | |- ( ( ph /\ ( x e. ( Base ` ( I mPwSer R ) ) /\ y e. ( Base ` ( I mPwSer R ) ) ) ) -> ( x ( +g ` ( I mPwSer R ) ) y ) = ( x ( +g ` O ) y ) ) |
| 11 | 5 2 3 | psrsca | |- ( ph -> R = ( Scalar ` ( I mPwSer R ) ) ) |
| 12 | 5 1 4 2 3 | opsrsca | |- ( ph -> R = ( Scalar ` O ) ) |
| 13 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 14 | 5 1 4 | opsrvsca | |- ( ph -> ( .s ` ( I mPwSer R ) ) = ( .s ` O ) ) |
| 15 | 14 | oveqdr | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` ( I mPwSer R ) ) ) ) -> ( x ( .s ` ( I mPwSer R ) ) y ) = ( x ( .s ` O ) y ) ) |
| 16 | 7 8 10 11 12 13 15 | lmodpropd | |- ( ph -> ( ( I mPwSer R ) e. LMod <-> O e. LMod ) ) |
| 17 | 6 16 | mpbid | |- ( ph -> O e. LMod ) |