This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 9-Sep-2021) (Revised by AV, 1-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrbas.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| opsrbas.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | ||
| opsrbas.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | ||
| opsrbaslem.1 | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | ||
| opsrbaslem.2 | ⊢ ( 𝐸 ‘ ndx ) ≠ ( le ‘ ndx ) | ||
| Assertion | opsrbaslem | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝑆 ) = ( 𝐸 ‘ 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrbas.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | opsrbas.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| 3 | opsrbas.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | |
| 4 | opsrbaslem.1 | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| 5 | opsrbaslem.2 | ⊢ ( 𝐸 ‘ ndx ) ≠ ( le ‘ ndx ) | |
| 6 | 4 5 | setsnid | ⊢ ( 𝐸 ‘ 𝑆 ) = ( 𝐸 ‘ ( 𝑆 sSet 〈 ( le ‘ ndx ) , ( le ‘ 𝑂 ) 〉 ) ) |
| 7 | eqid | ⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) | |
| 8 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝐼 ∈ V ) | |
| 9 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝑅 ∈ V ) | |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) |
| 11 | 1 2 7 8 9 10 | opsrval2 | ⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝑂 = ( 𝑆 sSet 〈 ( le ‘ ndx ) , ( le ‘ 𝑂 ) 〉 ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( 𝐸 ‘ 𝑂 ) = ( 𝐸 ‘ ( 𝑆 sSet 〈 ( le ‘ ndx ) , ( le ‘ 𝑂 ) 〉 ) ) ) |
| 13 | 6 12 | eqtr4id | ⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( 𝐸 ‘ 𝑆 ) = ( 𝐸 ‘ 𝑂 ) ) |
| 14 | 0fv | ⊢ ( ∅ ‘ 𝑇 ) = ∅ | |
| 15 | 14 | eqcomi | ⊢ ∅ = ( ∅ ‘ 𝑇 ) |
| 16 | reldmpsr | ⊢ Rel dom mPwSer | |
| 17 | 16 | ovprc | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
| 18 | reldmopsr | ⊢ Rel dom ordPwSer | |
| 19 | 18 | ovprc | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 ordPwSer 𝑅 ) = ∅ ) |
| 20 | 19 | fveq1d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) = ( ∅ ‘ 𝑇 ) ) |
| 21 | 15 17 20 | 3eqtr4a | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPwSer 𝑅 ) = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) ) |
| 22 | 21 1 2 | 3eqtr4g | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑆 = 𝑂 ) |
| 23 | 22 | fveq2d | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐸 ‘ 𝑆 ) = ( 𝐸 ‘ 𝑂 ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( 𝐸 ‘ 𝑆 ) = ( 𝐸 ‘ 𝑂 ) ) |
| 25 | 13 24 | pm2.61dan | ⊢ ( 𝜑 → ( 𝐸 ‘ 𝑆 ) = ( 𝐸 ‘ 𝑂 ) ) |