This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oprabex3.1 | |- H e. _V |
|
| oprabex3.2 | |- F = { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
||
| Assertion | oprabex3 | |- F e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabex3.1 | |- H e. _V |
|
| 2 | oprabex3.2 | |- F = { <. <. x , y >. , z >. | ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) } |
|
| 3 | 1 1 | xpex | |- ( H X. H ) e. _V |
| 4 | moeq | |- E* z z = R |
|
| 5 | 4 | mosubop | |- E* z E. u E. f ( y = <. u , f >. /\ z = R ) |
| 6 | 5 | mosubop | |- E* z E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) |
| 7 | anass | |- ( ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = R ) ) ) |
|
| 8 | 7 | 2exbii | |- ( E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. u E. f ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = R ) ) ) |
| 9 | 19.42vv | |- ( E. u E. f ( x = <. w , v >. /\ ( y = <. u , f >. /\ z = R ) ) <-> ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
|
| 10 | 8 9 | bitri | |- ( E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
| 11 | 10 | 2exbii | |- ( E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
| 12 | 11 | mobii | |- ( E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) <-> E* z E. w E. v ( x = <. w , v >. /\ E. u E. f ( y = <. u , f >. /\ z = R ) ) ) |
| 13 | 6 12 | mpbir | |- E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) |
| 14 | 13 | a1i | |- ( ( x e. ( H X. H ) /\ y e. ( H X. H ) ) -> E* z E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = R ) ) |
| 15 | 3 3 14 2 | oprabex | |- F e. _V |