This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by David Abernethy, 23-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oprab2co.1 | |- ( ( x e. A /\ y e. B ) -> C e. R ) |
|
| oprab2co.2 | |- ( ( x e. A /\ y e. B ) -> D e. S ) |
||
| oprab2co.3 | |- F = ( x e. A , y e. B |-> <. C , D >. ) |
||
| oprab2co.4 | |- G = ( x e. A , y e. B |-> ( C M D ) ) |
||
| Assertion | oprab2co | |- ( M Fn ( R X. S ) -> G = ( M o. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprab2co.1 | |- ( ( x e. A /\ y e. B ) -> C e. R ) |
|
| 2 | oprab2co.2 | |- ( ( x e. A /\ y e. B ) -> D e. S ) |
|
| 3 | oprab2co.3 | |- F = ( x e. A , y e. B |-> <. C , D >. ) |
|
| 4 | oprab2co.4 | |- G = ( x e. A , y e. B |-> ( C M D ) ) |
|
| 5 | 1 2 | opelxpd | |- ( ( x e. A /\ y e. B ) -> <. C , D >. e. ( R X. S ) ) |
| 6 | df-ov | |- ( C M D ) = ( M ` <. C , D >. ) |
|
| 7 | 6 | a1i | |- ( ( x e. A /\ y e. B ) -> ( C M D ) = ( M ` <. C , D >. ) ) |
| 8 | 7 | mpoeq3ia | |- ( x e. A , y e. B |-> ( C M D ) ) = ( x e. A , y e. B |-> ( M ` <. C , D >. ) ) |
| 9 | 4 8 | eqtri | |- G = ( x e. A , y e. B |-> ( M ` <. C , D >. ) ) |
| 10 | 5 3 9 | oprabco | |- ( M Fn ( R X. S ) -> G = ( M o. F ) ) |