This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015) (Revised by Mario Carneiro, 16-Sep-2015) (Revised by Fan Zheng, 26-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppgval.2 | |- .+ = ( +g ` R ) |
|
| oppgval.3 | |- O = ( oppG ` R ) |
||
| Assertion | oppgval | |- O = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgval.2 | |- .+ = ( +g ` R ) |
|
| 2 | oppgval.3 | |- O = ( oppG ` R ) |
|
| 3 | id | |- ( x = R -> x = R ) |
|
| 4 | fveq2 | |- ( x = R -> ( +g ` x ) = ( +g ` R ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( x = R -> ( +g ` x ) = .+ ) |
| 6 | 5 | tposeqd | |- ( x = R -> tpos ( +g ` x ) = tpos .+ ) |
| 7 | 6 | opeq2d | |- ( x = R -> <. ( +g ` ndx ) , tpos ( +g ` x ) >. = <. ( +g ` ndx ) , tpos .+ >. ) |
| 8 | 3 7 | oveq12d | |- ( x = R -> ( x sSet <. ( +g ` ndx ) , tpos ( +g ` x ) >. ) = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) ) |
| 9 | df-oppg | |- oppG = ( x e. _V |-> ( x sSet <. ( +g ` ndx ) , tpos ( +g ` x ) >. ) ) |
|
| 10 | ovex | |- ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) e. _V |
|
| 11 | 8 9 10 | fvmpt | |- ( R e. _V -> ( oppG ` R ) = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) ) |
| 12 | fvprc | |- ( -. R e. _V -> ( oppG ` R ) = (/) ) |
|
| 13 | reldmsets | |- Rel dom sSet |
|
| 14 | 13 | ovprc1 | |- ( -. R e. _V -> ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) = (/) ) |
| 15 | 12 14 | eqtr4d | |- ( -. R e. _V -> ( oppG ` R ) = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) ) |
| 16 | 11 15 | pm2.61i | |- ( oppG ` R ) = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) |
| 17 | 2 16 | eqtri | |- O = ( R sSet <. ( +g ` ndx ) , tpos .+ >. ) |