This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfoppc.o | |- O = ( oppCat ` C ) |
|
| oppfoppc.p | |- P = ( oppCat ` D ) |
||
| oppfoppc.f | |- ( ph -> F ( C Func D ) G ) |
||
| Assertion | oppfoppc | |- ( ph -> ( F oppFunc G ) e. ( O Func P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfoppc.o | |- O = ( oppCat ` C ) |
|
| 2 | oppfoppc.p | |- P = ( oppCat ` D ) |
|
| 3 | oppfoppc.f | |- ( ph -> F ( C Func D ) G ) |
|
| 4 | oppfval | |- ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) |
|
| 5 | 3 4 | syl | |- ( ph -> ( F oppFunc G ) = <. F , tpos G >. ) |
| 6 | 1 2 3 | funcoppc | |- ( ph -> F ( O Func P ) tpos G ) |
| 7 | df-br | |- ( F ( O Func P ) tpos G <-> <. F , tpos G >. e. ( O Func P ) ) |
|
| 8 | 6 7 | sylib | |- ( ph -> <. F , tpos G >. e. ( O Func P ) ) |
| 9 | 5 8 | eqeltrd | |- ( ph -> ( F oppFunc G ) e. ( O Func P ) ) |