This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define an opposite category, which is the same as the original category but with the direction of arrows the other way around. Definition 3.5 of Adamek p. 25. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-oppc | |- oppCat = ( f e. _V |-> ( ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | coppc | |- oppCat |
|
| 1 | vf | |- f |
|
| 2 | cvv | |- _V |
|
| 3 | 1 | cv | |- f |
| 4 | csts | |- sSet |
|
| 5 | chom | |- Hom |
|
| 6 | cnx | |- ndx |
|
| 7 | 6 5 | cfv | |- ( Hom ` ndx ) |
| 8 | 3 5 | cfv | |- ( Hom ` f ) |
| 9 | 8 | ctpos | |- tpos ( Hom ` f ) |
| 10 | 7 9 | cop | |- <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. |
| 11 | 3 10 4 | co | |- ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) |
| 12 | cco | |- comp |
|
| 13 | 6 12 | cfv | |- ( comp ` ndx ) |
| 14 | vu | |- u |
|
| 15 | cbs | |- Base |
|
| 16 | 3 15 | cfv | |- ( Base ` f ) |
| 17 | 16 16 | cxp | |- ( ( Base ` f ) X. ( Base ` f ) ) |
| 18 | vz | |- z |
|
| 19 | 18 | cv | |- z |
| 20 | c2nd | |- 2nd |
|
| 21 | 14 | cv | |- u |
| 22 | 21 20 | cfv | |- ( 2nd ` u ) |
| 23 | 19 22 | cop | |- <. z , ( 2nd ` u ) >. |
| 24 | 3 12 | cfv | |- ( comp ` f ) |
| 25 | c1st | |- 1st |
|
| 26 | 21 25 | cfv | |- ( 1st ` u ) |
| 27 | 23 26 24 | co | |- ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) |
| 28 | 27 | ctpos | |- tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) |
| 29 | 14 18 17 16 28 | cmpo | |- ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) |
| 30 | 13 29 | cop | |- <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. |
| 31 | 11 30 4 | co | |- ( ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. ) |
| 32 | 1 2 31 | cmpt | |- ( f e. _V |-> ( ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. ) ) |
| 33 | 0 32 | wceq | |- oppCat = ( f e. _V |-> ( ( f sSet <. ( Hom ` ndx ) , tpos ( Hom ` f ) >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` f ) X. ( Base ` f ) ) , z e. ( Base ` f ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` f ) ( 1st ` u ) ) ) >. ) ) |