This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ffvresb | |- ( Fun F -> ( ( F |` A ) : A --> B <-> A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm | |- ( ( F |` A ) : A --> B -> dom ( F |` A ) = A ) |
|
| 2 | dmres | |- dom ( F |` A ) = ( A i^i dom F ) |
|
| 3 | inss2 | |- ( A i^i dom F ) C_ dom F |
|
| 4 | 2 3 | eqsstri | |- dom ( F |` A ) C_ dom F |
| 5 | 1 4 | eqsstrrdi | |- ( ( F |` A ) : A --> B -> A C_ dom F ) |
| 6 | 5 | sselda | |- ( ( ( F |` A ) : A --> B /\ x e. A ) -> x e. dom F ) |
| 7 | fvres | |- ( x e. A -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
|
| 8 | 7 | adantl | |- ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
| 9 | ffvelcdm | |- ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( ( F |` A ) ` x ) e. B ) |
|
| 10 | 8 9 | eqeltrrd | |- ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
| 11 | 6 10 | jca | |- ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( x e. dom F /\ ( F ` x ) e. B ) ) |
| 12 | 11 | ralrimiva | |- ( ( F |` A ) : A --> B -> A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) |
| 13 | simpl | |- ( ( x e. dom F /\ ( F ` x ) e. B ) -> x e. dom F ) |
|
| 14 | 13 | ralimi | |- ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> A. x e. A x e. dom F ) |
| 15 | dfss3 | |- ( A C_ dom F <-> A. x e. A x e. dom F ) |
|
| 16 | 14 15 | sylibr | |- ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> A C_ dom F ) |
| 17 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 18 | fnssres | |- ( ( F Fn dom F /\ A C_ dom F ) -> ( F |` A ) Fn A ) |
|
| 19 | 17 18 | sylanb | |- ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) Fn A ) |
| 20 | 16 19 | sylan2 | |- ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> ( F |` A ) Fn A ) |
| 21 | simpr | |- ( ( x e. dom F /\ ( F ` x ) e. B ) -> ( F ` x ) e. B ) |
|
| 22 | 7 | eleq1d | |- ( x e. A -> ( ( ( F |` A ) ` x ) e. B <-> ( F ` x ) e. B ) ) |
| 23 | 21 22 | imbitrrid | |- ( x e. A -> ( ( x e. dom F /\ ( F ` x ) e. B ) -> ( ( F |` A ) ` x ) e. B ) ) |
| 24 | 23 | ralimia | |- ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> A. x e. A ( ( F |` A ) ` x ) e. B ) |
| 25 | 24 | adantl | |- ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> A. x e. A ( ( F |` A ) ` x ) e. B ) |
| 26 | fnfvrnss | |- ( ( ( F |` A ) Fn A /\ A. x e. A ( ( F |` A ) ` x ) e. B ) -> ran ( F |` A ) C_ B ) |
|
| 27 | 20 25 26 | syl2anc | |- ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> ran ( F |` A ) C_ B ) |
| 28 | df-f | |- ( ( F |` A ) : A --> B <-> ( ( F |` A ) Fn A /\ ran ( F |` A ) C_ B ) ) |
|
| 29 | 20 27 28 | sylanbrc | |- ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> ( F |` A ) : A --> B ) |
| 30 | 29 | ex | |- ( Fun F -> ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> ( F |` A ) : A --> B ) ) |
| 31 | 12 30 | impbid2 | |- ( Fun F -> ( ( F |` A ) : A --> B <-> A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) ) |