This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opabid2 | |- ( Rel A -> { <. x , y >. | <. x , y >. e. A } = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- z e. _V |
|
| 2 | vex | |- w e. _V |
|
| 3 | opeq1 | |- ( x = z -> <. x , y >. = <. z , y >. ) |
|
| 4 | 3 | eleq1d | |- ( x = z -> ( <. x , y >. e. A <-> <. z , y >. e. A ) ) |
| 5 | opeq2 | |- ( y = w -> <. z , y >. = <. z , w >. ) |
|
| 6 | 5 | eleq1d | |- ( y = w -> ( <. z , y >. e. A <-> <. z , w >. e. A ) ) |
| 7 | 1 2 4 6 | opelopab | |- ( <. z , w >. e. { <. x , y >. | <. x , y >. e. A } <-> <. z , w >. e. A ) |
| 8 | 7 | gen2 | |- A. z A. w ( <. z , w >. e. { <. x , y >. | <. x , y >. e. A } <-> <. z , w >. e. A ) |
| 9 | relopabv | |- Rel { <. x , y >. | <. x , y >. e. A } |
|
| 10 | eqrel | |- ( ( Rel { <. x , y >. | <. x , y >. e. A } /\ Rel A ) -> ( { <. x , y >. | <. x , y >. e. A } = A <-> A. z A. w ( <. z , w >. e. { <. x , y >. | <. x , y >. e. A } <-> <. z , w >. e. A ) ) ) |
|
| 11 | 9 10 | mpan | |- ( Rel A -> ( { <. x , y >. | <. x , y >. e. A } = A <-> A. z A. w ( <. z , w >. e. { <. x , y >. | <. x , y >. e. A } <-> <. z , w >. e. A ) ) ) |
| 12 | 8 11 | mpbiri | |- ( Rel A -> { <. x , y >. | <. x , y >. e. A } = A ) |