This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinals (continued)
onnminsb
Metamath Proof Explorer
Description: An ordinal number smaller than the minimum of a set of ordinal numbers
does not have the property determining that set. ps is the wff
resulting from the substitution of A for x in wff ph .
(Contributed by NM , 9-Nov-2003)
Ref
Expression
Hypothesis
onnminsb.1
⊢ x = A → φ ↔ ψ
Assertion
onnminsb
⊢ A ∈ On → A ∈ ⋂ x ∈ On | φ → ¬ ψ
Proof
Step
Hyp
Ref
Expression
1
onnminsb.1
⊢ x = A → φ ↔ ψ
2
1
elrab
⊢ A ∈ x ∈ On | φ ↔ A ∈ On ∧ ψ
3
ssrab2
⊢ x ∈ On | φ ⊆ On
4
onnmin
⊢ x ∈ On | φ ⊆ On ∧ A ∈ x ∈ On | φ → ¬ A ∈ ⋂ x ∈ On | φ
5
3 4
mpan
⊢ A ∈ x ∈ On | φ → ¬ A ∈ ⋂ x ∈ On | φ
6
2 5
sylbir
⊢ A ∈ On ∧ ψ → ¬ A ∈ ⋂ x ∈ On | φ
7
6
ex
⊢ A ∈ On → ψ → ¬ A ∈ ⋂ x ∈ On | φ
8
7
con2d
⊢ A ∈ On → A ∈ ⋂ x ∈ On | φ → ¬ ψ