This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty ordinal contains the empty set. Lemma 1.10 of Schloeder p. 2. (Contributed by NM, 25-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ord0eln0 | |- ( Ord A -> ( (/) e. A <-> A =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | |- ( (/) e. A -> A =/= (/) ) |
|
| 2 | ord0 | |- Ord (/) |
|
| 3 | noel | |- -. A e. (/) |
|
| 4 | ordtri2 | |- ( ( Ord A /\ Ord (/) ) -> ( A e. (/) <-> -. ( A = (/) \/ (/) e. A ) ) ) |
|
| 5 | 4 | con2bid | |- ( ( Ord A /\ Ord (/) ) -> ( ( A = (/) \/ (/) e. A ) <-> -. A e. (/) ) ) |
| 6 | 3 5 | mpbiri | |- ( ( Ord A /\ Ord (/) ) -> ( A = (/) \/ (/) e. A ) ) |
| 7 | 2 6 | mpan2 | |- ( Ord A -> ( A = (/) \/ (/) e. A ) ) |
| 8 | neor | |- ( ( A = (/) \/ (/) e. A ) <-> ( A =/= (/) -> (/) e. A ) ) |
|
| 9 | 7 8 | sylib | |- ( Ord A -> ( A =/= (/) -> (/) e. A ) ) |
| 10 | 1 9 | impbid2 | |- ( Ord A -> ( (/) e. A <-> A =/= (/) ) ) |