This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an orthomodular lattice." (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isoml.b | |- B = ( Base ` K ) |
|
| isoml.l | |- .<_ = ( le ` K ) |
||
| isoml.j | |- .\/ = ( join ` K ) |
||
| isoml.m | |- ./\ = ( meet ` K ) |
||
| isoml.o | |- ._|_ = ( oc ` K ) |
||
| Assertion | isoml | |- ( K e. OML <-> ( K e. OL /\ A. x e. B A. y e. B ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isoml.b | |- B = ( Base ` K ) |
|
| 2 | isoml.l | |- .<_ = ( le ` K ) |
|
| 3 | isoml.j | |- .\/ = ( join ` K ) |
|
| 4 | isoml.m | |- ./\ = ( meet ` K ) |
|
| 5 | isoml.o | |- ._|_ = ( oc ` K ) |
|
| 6 | fveq2 | |- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( k = K -> ( Base ` k ) = B ) |
| 8 | fveq2 | |- ( k = K -> ( le ` k ) = ( le ` K ) ) |
|
| 9 | 8 2 | eqtr4di | |- ( k = K -> ( le ` k ) = .<_ ) |
| 10 | 9 | breqd | |- ( k = K -> ( x ( le ` k ) y <-> x .<_ y ) ) |
| 11 | fveq2 | |- ( k = K -> ( join ` k ) = ( join ` K ) ) |
|
| 12 | 11 3 | eqtr4di | |- ( k = K -> ( join ` k ) = .\/ ) |
| 13 | eqidd | |- ( k = K -> x = x ) |
|
| 14 | fveq2 | |- ( k = K -> ( meet ` k ) = ( meet ` K ) ) |
|
| 15 | 14 4 | eqtr4di | |- ( k = K -> ( meet ` k ) = ./\ ) |
| 16 | eqidd | |- ( k = K -> y = y ) |
|
| 17 | fveq2 | |- ( k = K -> ( oc ` k ) = ( oc ` K ) ) |
|
| 18 | 17 5 | eqtr4di | |- ( k = K -> ( oc ` k ) = ._|_ ) |
| 19 | 18 | fveq1d | |- ( k = K -> ( ( oc ` k ) ` x ) = ( ._|_ ` x ) ) |
| 20 | 15 16 19 | oveq123d | |- ( k = K -> ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) = ( y ./\ ( ._|_ ` x ) ) ) |
| 21 | 12 13 20 | oveq123d | |- ( k = K -> ( x ( join ` k ) ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) ) = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) |
| 22 | 21 | eqeq2d | |- ( k = K -> ( y = ( x ( join ` k ) ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) ) <-> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) |
| 23 | 10 22 | imbi12d | |- ( k = K -> ( ( x ( le ` k ) y -> y = ( x ( join ` k ) ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) ) ) <-> ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) ) |
| 24 | 7 23 | raleqbidv | |- ( k = K -> ( A. y e. ( Base ` k ) ( x ( le ` k ) y -> y = ( x ( join ` k ) ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) ) ) <-> A. y e. B ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) ) |
| 25 | 7 24 | raleqbidv | |- ( k = K -> ( A. x e. ( Base ` k ) A. y e. ( Base ` k ) ( x ( le ` k ) y -> y = ( x ( join ` k ) ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) ) ) <-> A. x e. B A. y e. B ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) ) |
| 26 | df-oml | |- OML = { k e. OL | A. x e. ( Base ` k ) A. y e. ( Base ` k ) ( x ( le ` k ) y -> y = ( x ( join ` k ) ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) ) ) } |
|
| 27 | 25 26 | elrab2 | |- ( K e. OML <-> ( K e. OL /\ A. x e. B A. y e. B ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) ) |