This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for omabs . (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omabslem | |- ( ( _om e. On /\ A e. _om /\ (/) e. A ) -> ( A .o _om ) = _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | |- ( A e. _om -> A e. On ) |
|
| 2 | limom | |- Lim _om |
|
| 3 | 2 | jctr | |- ( _om e. On -> ( _om e. On /\ Lim _om ) ) |
| 4 | omlim | |- ( ( A e. On /\ ( _om e. On /\ Lim _om ) ) -> ( A .o _om ) = U_ x e. _om ( A .o x ) ) |
|
| 5 | 1 3 4 | syl2an | |- ( ( A e. _om /\ _om e. On ) -> ( A .o _om ) = U_ x e. _om ( A .o x ) ) |
| 6 | ordom | |- Ord _om |
|
| 7 | nnmcl | |- ( ( A e. _om /\ x e. _om ) -> ( A .o x ) e. _om ) |
|
| 8 | ordelss | |- ( ( Ord _om /\ ( A .o x ) e. _om ) -> ( A .o x ) C_ _om ) |
|
| 9 | 6 7 8 | sylancr | |- ( ( A e. _om /\ x e. _om ) -> ( A .o x ) C_ _om ) |
| 10 | 9 | ralrimiva | |- ( A e. _om -> A. x e. _om ( A .o x ) C_ _om ) |
| 11 | iunss | |- ( U_ x e. _om ( A .o x ) C_ _om <-> A. x e. _om ( A .o x ) C_ _om ) |
|
| 12 | 10 11 | sylibr | |- ( A e. _om -> U_ x e. _om ( A .o x ) C_ _om ) |
| 13 | 12 | adantr | |- ( ( A e. _om /\ _om e. On ) -> U_ x e. _om ( A .o x ) C_ _om ) |
| 14 | 5 13 | eqsstrd | |- ( ( A e. _om /\ _om e. On ) -> ( A .o _om ) C_ _om ) |
| 15 | 14 | ancoms | |- ( ( _om e. On /\ A e. _om ) -> ( A .o _om ) C_ _om ) |
| 16 | 15 | 3adant3 | |- ( ( _om e. On /\ A e. _om /\ (/) e. A ) -> ( A .o _om ) C_ _om ) |
| 17 | omword2 | |- ( ( ( _om e. On /\ A e. On ) /\ (/) e. A ) -> _om C_ ( A .o _om ) ) |
|
| 18 | 17 | 3impa | |- ( ( _om e. On /\ A e. On /\ (/) e. A ) -> _om C_ ( A .o _om ) ) |
| 19 | 1 18 | syl3an2 | |- ( ( _om e. On /\ A e. _om /\ (/) e. A ) -> _om C_ ( A .o _om ) ) |
| 20 | 16 19 | eqssd | |- ( ( _om e. On /\ A e. _om /\ (/) e. A ) -> ( A .o _om ) = _om ) |