This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 7-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofs2 | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( <" A B "> oF R <" C D "> ) = <" ( A R C ) ( B R D ) "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s2 | |- <" A B "> = ( <" A "> ++ <" B "> ) |
|
| 2 | df-s2 | |- <" C D "> = ( <" C "> ++ <" D "> ) |
|
| 3 | 1 2 | oveq12i | |- ( <" A B "> oF R <" C D "> ) = ( ( <" A "> ++ <" B "> ) oF R ( <" C "> ++ <" D "> ) ) |
| 4 | simpll | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> A e. S ) |
|
| 5 | 4 | s1cld | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> <" A "> e. Word S ) |
| 6 | simplr | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> B e. S ) |
|
| 7 | 6 | s1cld | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> <" B "> e. Word S ) |
| 8 | simprl | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> C e. T ) |
|
| 9 | 8 | s1cld | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> <" C "> e. Word T ) |
| 10 | simprr | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> D e. T ) |
|
| 11 | 10 | s1cld | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> <" D "> e. Word T ) |
| 12 | s1len | |- ( # ` <" A "> ) = 1 |
|
| 13 | s1len | |- ( # ` <" C "> ) = 1 |
|
| 14 | 12 13 | eqtr4i | |- ( # ` <" A "> ) = ( # ` <" C "> ) |
| 15 | 14 | a1i | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( # ` <" A "> ) = ( # ` <" C "> ) ) |
| 16 | s1len | |- ( # ` <" B "> ) = 1 |
|
| 17 | s1len | |- ( # ` <" D "> ) = 1 |
|
| 18 | 16 17 | eqtr4i | |- ( # ` <" B "> ) = ( # ` <" D "> ) |
| 19 | 18 | a1i | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( # ` <" B "> ) = ( # ` <" D "> ) ) |
| 20 | 5 7 9 11 15 19 | ofccat | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( ( <" A "> ++ <" B "> ) oF R ( <" C "> ++ <" D "> ) ) = ( ( <" A "> oF R <" C "> ) ++ ( <" B "> oF R <" D "> ) ) ) |
| 21 | 3 20 | eqtrid | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( <" A B "> oF R <" C D "> ) = ( ( <" A "> oF R <" C "> ) ++ ( <" B "> oF R <" D "> ) ) ) |
| 22 | ofs1 | |- ( ( A e. S /\ C e. T ) -> ( <" A "> oF R <" C "> ) = <" ( A R C ) "> ) |
|
| 23 | 4 8 22 | syl2anc | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( <" A "> oF R <" C "> ) = <" ( A R C ) "> ) |
| 24 | ofs1 | |- ( ( B e. S /\ D e. T ) -> ( <" B "> oF R <" D "> ) = <" ( B R D ) "> ) |
|
| 25 | 6 10 24 | syl2anc | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( <" B "> oF R <" D "> ) = <" ( B R D ) "> ) |
| 26 | 23 25 | oveq12d | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( ( <" A "> oF R <" C "> ) ++ ( <" B "> oF R <" D "> ) ) = ( <" ( A R C ) "> ++ <" ( B R D ) "> ) ) |
| 27 | df-s2 | |- <" ( A R C ) ( B R D ) "> = ( <" ( A R C ) "> ++ <" ( B R D ) "> ) |
|
| 28 | 26 27 | eqtr4di | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( ( <" A "> oF R <" C "> ) ++ ( <" B "> oF R <" D "> ) ) = <" ( A R C ) ( B R D ) "> ) |
| 29 | 21 28 | eqtrd | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. T /\ D e. T ) ) -> ( <" A B "> oF R <" C D "> ) = <" ( A R C ) ( B R D ) "> ) |