This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ofres.1 | |- ( ph -> F Fn A ) |
|
| ofres.2 | |- ( ph -> G Fn B ) |
||
| ofres.3 | |- ( ph -> A e. V ) |
||
| ofres.4 | |- ( ph -> B e. W ) |
||
| ofres.5 | |- ( A i^i B ) = C |
||
| Assertion | ofres | |- ( ph -> ( F oF R G ) = ( ( F |` C ) oF R ( G |` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofres.1 | |- ( ph -> F Fn A ) |
|
| 2 | ofres.2 | |- ( ph -> G Fn B ) |
|
| 3 | ofres.3 | |- ( ph -> A e. V ) |
|
| 4 | ofres.4 | |- ( ph -> B e. W ) |
|
| 5 | ofres.5 | |- ( A i^i B ) = C |
|
| 6 | eqidd | |- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
|
| 7 | eqidd | |- ( ( ph /\ x e. B ) -> ( G ` x ) = ( G ` x ) ) |
|
| 8 | 1 2 3 4 5 6 7 | offval | |- ( ph -> ( F oF R G ) = ( x e. C |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 9 | inss1 | |- ( A i^i B ) C_ A |
|
| 10 | 5 9 | eqsstrri | |- C C_ A |
| 11 | fnssres | |- ( ( F Fn A /\ C C_ A ) -> ( F |` C ) Fn C ) |
|
| 12 | 1 10 11 | sylancl | |- ( ph -> ( F |` C ) Fn C ) |
| 13 | inss2 | |- ( A i^i B ) C_ B |
|
| 14 | 5 13 | eqsstrri | |- C C_ B |
| 15 | fnssres | |- ( ( G Fn B /\ C C_ B ) -> ( G |` C ) Fn C ) |
|
| 16 | 2 14 15 | sylancl | |- ( ph -> ( G |` C ) Fn C ) |
| 17 | ssexg | |- ( ( C C_ A /\ A e. V ) -> C e. _V ) |
|
| 18 | 10 3 17 | sylancr | |- ( ph -> C e. _V ) |
| 19 | inidm | |- ( C i^i C ) = C |
|
| 20 | fvres | |- ( x e. C -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
|
| 21 | 20 | adantl | |- ( ( ph /\ x e. C ) -> ( ( F |` C ) ` x ) = ( F ` x ) ) |
| 22 | fvres | |- ( x e. C -> ( ( G |` C ) ` x ) = ( G ` x ) ) |
|
| 23 | 22 | adantl | |- ( ( ph /\ x e. C ) -> ( ( G |` C ) ` x ) = ( G ` x ) ) |
| 24 | 12 16 18 18 19 21 23 | offval | |- ( ph -> ( ( F |` C ) oF R ( G |` C ) ) = ( x e. C |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 25 | 8 24 | eqtr4d | |- ( ph -> ( F oF R G ) = ( ( F |` C ) oF R ( G |` C ) ) ) |