This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: - Lemma for odzcl , showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014) (Proof shortened by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | odzcllem | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( ( odZ ` N ) ` A ) e. NN /\ N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odzval | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( odZ ` N ) ` A ) = inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) ) |
|
| 2 | ssrab2 | |- { n e. NN | N || ( ( A ^ n ) - 1 ) } C_ NN |
|
| 3 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 4 | 2 3 | sseqtri | |- { n e. NN | N || ( ( A ^ n ) - 1 ) } C_ ( ZZ>= ` 1 ) |
| 5 | phicl | |- ( N e. NN -> ( phi ` N ) e. NN ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( phi ` N ) e. NN ) |
| 7 | eulerth | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) ) |
|
| 8 | simp1 | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N e. NN ) |
|
| 9 | simp2 | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> A e. ZZ ) |
|
| 10 | 6 | nnnn0d | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( phi ` N ) e. NN0 ) |
| 11 | zexpcl | |- ( ( A e. ZZ /\ ( phi ` N ) e. NN0 ) -> ( A ^ ( phi ` N ) ) e. ZZ ) |
|
| 12 | 9 10 11 | syl2anc | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( A ^ ( phi ` N ) ) e. ZZ ) |
| 13 | 1z | |- 1 e. ZZ |
|
| 14 | moddvds | |- ( ( N e. NN /\ ( A ^ ( phi ` N ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
|
| 15 | 13 14 | mp3an3 | |- ( ( N e. NN /\ ( A ^ ( phi ` N ) ) e. ZZ ) -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
| 16 | 8 12 15 | syl2anc | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
| 17 | 7 16 | mpbid | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) |
| 18 | oveq2 | |- ( n = ( phi ` N ) -> ( A ^ n ) = ( A ^ ( phi ` N ) ) ) |
|
| 19 | 18 | oveq1d | |- ( n = ( phi ` N ) -> ( ( A ^ n ) - 1 ) = ( ( A ^ ( phi ` N ) ) - 1 ) ) |
| 20 | 19 | breq2d | |- ( n = ( phi ` N ) -> ( N || ( ( A ^ n ) - 1 ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
| 21 | 20 | rspcev | |- ( ( ( phi ` N ) e. NN /\ N || ( ( A ^ ( phi ` N ) ) - 1 ) ) -> E. n e. NN N || ( ( A ^ n ) - 1 ) ) |
| 22 | 6 17 21 | syl2anc | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> E. n e. NN N || ( ( A ^ n ) - 1 ) ) |
| 23 | rabn0 | |- ( { n e. NN | N || ( ( A ^ n ) - 1 ) } =/= (/) <-> E. n e. NN N || ( ( A ^ n ) - 1 ) ) |
|
| 24 | 22 23 | sylibr | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> { n e. NN | N || ( ( A ^ n ) - 1 ) } =/= (/) ) |
| 25 | infssuzcl | |- ( ( { n e. NN | N || ( ( A ^ n ) - 1 ) } C_ ( ZZ>= ` 1 ) /\ { n e. NN | N || ( ( A ^ n ) - 1 ) } =/= (/) ) -> inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) e. { n e. NN | N || ( ( A ^ n ) - 1 ) } ) |
|
| 26 | 4 24 25 | sylancr | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) e. { n e. NN | N || ( ( A ^ n ) - 1 ) } ) |
| 27 | 1 26 | eqeltrd | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( odZ ` N ) ` A ) e. { n e. NN | N || ( ( A ^ n ) - 1 ) } ) |
| 28 | oveq2 | |- ( n = ( ( odZ ` N ) ` A ) -> ( A ^ n ) = ( A ^ ( ( odZ ` N ) ` A ) ) ) |
|
| 29 | 28 | oveq1d | |- ( n = ( ( odZ ` N ) ` A ) -> ( ( A ^ n ) - 1 ) = ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) |
| 30 | 29 | breq2d | |- ( n = ( ( odZ ` N ) ` A ) -> ( N || ( ( A ^ n ) - 1 ) <-> N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) ) |
| 31 | 30 | elrab | |- ( ( ( odZ ` N ) ` A ) e. { n e. NN | N || ( ( A ^ n ) - 1 ) } <-> ( ( ( odZ ` N ) ` A ) e. NN /\ N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) ) |
| 32 | 27 31 | sylib | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( ( odZ ` N ) ` A ) e. NN /\ N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) ) |