This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: - Lemma for odzcl , showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014) (Proof shortened by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | odzcllem | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ∈ ℕ ∧ 𝑁 ∥ ( ( 𝐴 ↑ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ) − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odzval | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) = inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ) | |
| 2 | ssrab2 | ⊢ { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } ⊆ ℕ | |
| 3 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 4 | 2 3 | sseqtri | ⊢ { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } ⊆ ( ℤ≥ ‘ 1 ) |
| 5 | phicl | ⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) ∈ ℕ ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ϕ ‘ 𝑁 ) ∈ ℕ ) |
| 7 | eulerth | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ) | |
| 8 | simp1 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℕ ) | |
| 9 | simp2 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝐴 ∈ ℤ ) | |
| 10 | 6 | nnnn0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ϕ ‘ 𝑁 ) ∈ ℕ0 ) |
| 11 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ϕ ‘ 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) | |
| 12 | 9 10 11 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) |
| 13 | 1z | ⊢ 1 ∈ ℤ | |
| 14 | moddvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) | |
| 15 | 13 14 | mp3an3 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 16 | 8 12 15 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 17 | 7 16 | mpbid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) |
| 18 | oveq2 | ⊢ ( 𝑛 = ( ϕ ‘ 𝑁 ) → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ) | |
| 19 | 18 | oveq1d | ⊢ ( 𝑛 = ( ϕ ‘ 𝑁 ) → ( ( 𝐴 ↑ 𝑛 ) − 1 ) = ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) |
| 20 | 19 | breq2d | ⊢ ( 𝑛 = ( ϕ ‘ 𝑁 ) → ( 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 21 | 20 | rspcev | ⊢ ( ( ( ϕ ‘ 𝑁 ) ∈ ℕ ∧ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) → ∃ 𝑛 ∈ ℕ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) ) |
| 22 | 6 17 21 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ∃ 𝑛 ∈ ℕ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) ) |
| 23 | rabn0 | ⊢ ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } ≠ ∅ ↔ ∃ 𝑛 ∈ ℕ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) ) | |
| 24 | 22 23 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } ≠ ∅ ) |
| 25 | infssuzcl | ⊢ ( ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } ≠ ∅ ) → inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } ) | |
| 26 | 4 24 25 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → inf ( { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } ) |
| 27 | 1 26 | eqeltrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ∈ { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } ) |
| 28 | oveq2 | ⊢ ( 𝑛 = ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ) ) | |
| 29 | 28 | oveq1d | ⊢ ( 𝑛 = ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) → ( ( 𝐴 ↑ 𝑛 ) − 1 ) = ( ( 𝐴 ↑ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ) − 1 ) ) |
| 30 | 29 | breq2d | ⊢ ( 𝑛 = ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) → ( 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ) − 1 ) ) ) |
| 31 | 30 | elrab | ⊢ ( ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ∈ { 𝑛 ∈ ℕ ∣ 𝑁 ∥ ( ( 𝐴 ↑ 𝑛 ) − 1 ) } ↔ ( ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ∈ ℕ ∧ 𝑁 ∥ ( ( 𝐴 ↑ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ) − 1 ) ) ) |
| 32 | 27 31 | sylib | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ∈ ℕ ∧ 𝑁 ∥ ( ( 𝐴 ↑ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ) − 1 ) ) ) |