This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | odulat.d | |- D = ( ODual ` O ) |
|
| Assertion | odulatb | |- ( O e. V -> ( O e. Lat <-> D e. Lat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odulat.d | |- D = ( ODual ` O ) |
|
| 2 | 1 | oduposb | |- ( O e. V -> ( O e. Poset <-> D e. Poset ) ) |
| 3 | ancom | |- ( ( dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) <-> ( dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) ) |
|
| 4 | 3 | a1i | |- ( O e. V -> ( ( dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) <-> ( dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) ) ) |
| 5 | 2 4 | anbi12d | |- ( O e. V -> ( ( O e. Poset /\ ( dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) ) <-> ( D e. Poset /\ ( dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) ) ) ) |
| 6 | eqid | |- ( Base ` O ) = ( Base ` O ) |
|
| 7 | eqid | |- ( join ` O ) = ( join ` O ) |
|
| 8 | eqid | |- ( meet ` O ) = ( meet ` O ) |
|
| 9 | 6 7 8 | islat | |- ( O e. Lat <-> ( O e. Poset /\ ( dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) ) ) |
| 10 | 1 6 | odubas | |- ( Base ` O ) = ( Base ` D ) |
| 11 | 1 8 | odujoin | |- ( meet ` O ) = ( join ` D ) |
| 12 | 1 7 | odumeet | |- ( join ` O ) = ( meet ` D ) |
| 13 | 10 11 12 | islat | |- ( D e. Lat <-> ( D e. Poset /\ ( dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) ) ) |
| 14 | 5 9 13 | 3bitr4g | |- ( O e. V -> ( O e. Lat <-> D e. Lat ) ) |