This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Structure of the class of all normed complex vectors spaces. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 1-May-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nvss | |- NrmCVec C_ ( CVecOLD X. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( w = <. g , s >. -> ( w e. CVecOLD <-> <. g , s >. e. CVecOLD ) ) |
|
| 2 | 1 | biimpar | |- ( ( w = <. g , s >. /\ <. g , s >. e. CVecOLD ) -> w e. CVecOLD ) |
| 3 | 2 | 3ad2antr1 | |- ( ( w = <. g , s >. /\ ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) ) -> w e. CVecOLD ) |
| 4 | 3 | exlimivv | |- ( E. g E. s ( w = <. g , s >. /\ ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) ) -> w e. CVecOLD ) |
| 5 | vex | |- n e. _V |
|
| 6 | 4 5 | jctir | |- ( E. g E. s ( w = <. g , s >. /\ ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) ) -> ( w e. CVecOLD /\ n e. _V ) ) |
| 7 | 6 | ssopab2i | |- { <. w , n >. | E. g E. s ( w = <. g , s >. /\ ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) ) } C_ { <. w , n >. | ( w e. CVecOLD /\ n e. _V ) } |
| 8 | df-nv | |- NrmCVec = { <. <. g , s >. , n >. | ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) } |
|
| 9 | dfoprab2 | |- { <. <. g , s >. , n >. | ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) } = { <. w , n >. | E. g E. s ( w = <. g , s >. /\ ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) ) } |
|
| 10 | 8 9 | eqtri | |- NrmCVec = { <. w , n >. | E. g E. s ( w = <. g , s >. /\ ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) ) } |
| 11 | df-xp | |- ( CVecOLD X. _V ) = { <. w , n >. | ( w e. CVecOLD /\ n e. _V ) } |
|
| 12 | 7 10 11 | 3sstr4i | |- NrmCVec C_ ( CVecOLD X. _V ) |