This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all normed complex vector spaces. (Contributed by NM, 11-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nv | |- NrmCVec = { <. <. g , s >. , n >. | ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnv | |- NrmCVec |
|
| 1 | vg | |- g |
|
| 2 | vs | |- s |
|
| 3 | vn | |- n |
|
| 4 | 1 | cv | |- g |
| 5 | 2 | cv | |- s |
| 6 | 4 5 | cop | |- <. g , s >. |
| 7 | cvc | |- CVecOLD |
|
| 8 | 6 7 | wcel | |- <. g , s >. e. CVecOLD |
| 9 | 3 | cv | |- n |
| 10 | 4 | crn | |- ran g |
| 11 | cr | |- RR |
|
| 12 | 10 11 9 | wf | |- n : ran g --> RR |
| 13 | vx | |- x |
|
| 14 | 13 | cv | |- x |
| 15 | 14 9 | cfv | |- ( n ` x ) |
| 16 | cc0 | |- 0 |
|
| 17 | 15 16 | wceq | |- ( n ` x ) = 0 |
| 18 | cgi | |- GId |
|
| 19 | 4 18 | cfv | |- ( GId ` g ) |
| 20 | 14 19 | wceq | |- x = ( GId ` g ) |
| 21 | 17 20 | wi | |- ( ( n ` x ) = 0 -> x = ( GId ` g ) ) |
| 22 | vy | |- y |
|
| 23 | cc | |- CC |
|
| 24 | 22 | cv | |- y |
| 25 | 24 14 5 | co | |- ( y s x ) |
| 26 | 25 9 | cfv | |- ( n ` ( y s x ) ) |
| 27 | cabs | |- abs |
|
| 28 | 24 27 | cfv | |- ( abs ` y ) |
| 29 | cmul | |- x. |
|
| 30 | 28 15 29 | co | |- ( ( abs ` y ) x. ( n ` x ) ) |
| 31 | 26 30 | wceq | |- ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) |
| 32 | 31 22 23 | wral | |- A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) |
| 33 | 14 24 4 | co | |- ( x g y ) |
| 34 | 33 9 | cfv | |- ( n ` ( x g y ) ) |
| 35 | cle | |- <_ |
|
| 36 | caddc | |- + |
|
| 37 | 24 9 | cfv | |- ( n ` y ) |
| 38 | 15 37 36 | co | |- ( ( n ` x ) + ( n ` y ) ) |
| 39 | 34 38 35 | wbr | |- ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) |
| 40 | 39 22 10 | wral | |- A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) |
| 41 | 21 32 40 | w3a | |- ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) |
| 42 | 41 13 10 | wral | |- A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) |
| 43 | 8 12 42 | w3a | |- ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) |
| 44 | 43 1 2 3 | coprab | |- { <. <. g , s >. , n >. | ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) } |
| 45 | 0 44 | wceq | |- NrmCVec = { <. <. g , s >. , n >. | ( <. g , s >. e. CVecOLD /\ n : ran g --> RR /\ A. x e. ran g ( ( ( n ` x ) = 0 -> x = ( GId ` g ) ) /\ A. y e. CC ( n ` ( y s x ) ) = ( ( abs ` y ) x. ( n ` x ) ) /\ A. y e. ran g ( n ` ( x g y ) ) <_ ( ( n ` x ) + ( n ` y ) ) ) ) } |