This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of an involution is the function itself. (Contributed by Thierry Arnoux, 7-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nvocnv | |- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> `' F = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> y = ( F ` z ) ) |
|
| 2 | simpll | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> F : A --> A ) |
|
| 3 | simprl | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> z e. A ) |
|
| 4 | 2 3 | ffvelcdmd | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> ( F ` z ) e. A ) |
| 5 | 1 4 | eqeltrd | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> y e. A ) |
| 6 | 1 | fveq2d | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> ( F ` y ) = ( F ` ( F ` z ) ) ) |
| 7 | 2fveq3 | |- ( x = z -> ( F ` ( F ` x ) ) = ( F ` ( F ` z ) ) ) |
|
| 8 | id | |- ( x = z -> x = z ) |
|
| 9 | 7 8 | eqeq12d | |- ( x = z -> ( ( F ` ( F ` x ) ) = x <-> ( F ` ( F ` z ) ) = z ) ) |
| 10 | simplr | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> A. x e. A ( F ` ( F ` x ) ) = x ) |
|
| 11 | 9 10 3 | rspcdva | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> ( F ` ( F ` z ) ) = z ) |
| 12 | 6 11 | eqtr2d | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> z = ( F ` y ) ) |
| 13 | 5 12 | jca | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( z e. A /\ y = ( F ` z ) ) ) -> ( y e. A /\ z = ( F ` y ) ) ) |
| 14 | simprr | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> z = ( F ` y ) ) |
|
| 15 | simpll | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> F : A --> A ) |
|
| 16 | simprl | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> y e. A ) |
|
| 17 | 15 16 | ffvelcdmd | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> ( F ` y ) e. A ) |
| 18 | 14 17 | eqeltrd | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> z e. A ) |
| 19 | 14 | fveq2d | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> ( F ` z ) = ( F ` ( F ` y ) ) ) |
| 20 | 2fveq3 | |- ( x = y -> ( F ` ( F ` x ) ) = ( F ` ( F ` y ) ) ) |
|
| 21 | id | |- ( x = y -> x = y ) |
|
| 22 | 20 21 | eqeq12d | |- ( x = y -> ( ( F ` ( F ` x ) ) = x <-> ( F ` ( F ` y ) ) = y ) ) |
| 23 | simplr | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> A. x e. A ( F ` ( F ` x ) ) = x ) |
|
| 24 | 22 23 16 | rspcdva | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> ( F ` ( F ` y ) ) = y ) |
| 25 | 19 24 | eqtr2d | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> y = ( F ` z ) ) |
| 26 | 18 25 | jca | |- ( ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) /\ ( y e. A /\ z = ( F ` y ) ) ) -> ( z e. A /\ y = ( F ` z ) ) ) |
| 27 | 13 26 | impbida | |- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> ( ( z e. A /\ y = ( F ` z ) ) <-> ( y e. A /\ z = ( F ` y ) ) ) ) |
| 28 | 27 | mptcnv | |- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> `' ( z e. A |-> ( F ` z ) ) = ( y e. A |-> ( F ` y ) ) ) |
| 29 | ffn | |- ( F : A --> A -> F Fn A ) |
|
| 30 | dffn5 | |- ( F Fn A <-> F = ( z e. A |-> ( F ` z ) ) ) |
|
| 31 | 30 | biimpi | |- ( F Fn A -> F = ( z e. A |-> ( F ` z ) ) ) |
| 32 | 31 | adantr | |- ( ( F Fn A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> F = ( z e. A |-> ( F ` z ) ) ) |
| 33 | 29 32 | sylan | |- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> F = ( z e. A |-> ( F ` z ) ) ) |
| 34 | 33 | cnveqd | |- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> `' F = `' ( z e. A |-> ( F ` z ) ) ) |
| 35 | dffn5 | |- ( F Fn A <-> F = ( y e. A |-> ( F ` y ) ) ) |
|
| 36 | 35 | biimpi | |- ( F Fn A -> F = ( y e. A |-> ( F ` y ) ) ) |
| 37 | 36 | adantr | |- ( ( F Fn A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> F = ( y e. A |-> ( F ` y ) ) ) |
| 38 | 29 37 | sylan | |- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> F = ( y e. A |-> ( F ` y ) ) ) |
| 39 | 28 34 38 | 3eqtr4d | |- ( ( F : A --> A /\ A. x e. A ( F ` ( F ` x ) ) = x ) -> `' F = F ) |