This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a multiply-add of two decimal integers M and N against a fixed multiplicand P (no carry). (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numma.1 | |- T e. NN0 |
|
| numma.2 | |- A e. NN0 |
||
| numma.3 | |- B e. NN0 |
||
| numma.4 | |- C e. NN0 |
||
| numma.5 | |- D e. NN0 |
||
| numma.6 | |- M = ( ( T x. A ) + B ) |
||
| numma.7 | |- N = ( ( T x. C ) + D ) |
||
| numma.8 | |- P e. NN0 |
||
| numma.9 | |- ( ( A x. P ) + C ) = E |
||
| numma.10 | |- ( ( B x. P ) + D ) = F |
||
| Assertion | numma | |- ( ( M x. P ) + N ) = ( ( T x. E ) + F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.1 | |- T e. NN0 |
|
| 2 | numma.2 | |- A e. NN0 |
|
| 3 | numma.3 | |- B e. NN0 |
|
| 4 | numma.4 | |- C e. NN0 |
|
| 5 | numma.5 | |- D e. NN0 |
|
| 6 | numma.6 | |- M = ( ( T x. A ) + B ) |
|
| 7 | numma.7 | |- N = ( ( T x. C ) + D ) |
|
| 8 | numma.8 | |- P e. NN0 |
|
| 9 | numma.9 | |- ( ( A x. P ) + C ) = E |
|
| 10 | numma.10 | |- ( ( B x. P ) + D ) = F |
|
| 11 | 6 | oveq1i | |- ( M x. P ) = ( ( ( T x. A ) + B ) x. P ) |
| 12 | 11 7 | oveq12i | |- ( ( M x. P ) + N ) = ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) |
| 13 | 1 | nn0cni | |- T e. CC |
| 14 | 2 | nn0cni | |- A e. CC |
| 15 | 8 | nn0cni | |- P e. CC |
| 16 | 14 15 | mulcli | |- ( A x. P ) e. CC |
| 17 | 4 | nn0cni | |- C e. CC |
| 18 | 13 16 17 | adddii | |- ( T x. ( ( A x. P ) + C ) ) = ( ( T x. ( A x. P ) ) + ( T x. C ) ) |
| 19 | 13 14 15 | mulassi | |- ( ( T x. A ) x. P ) = ( T x. ( A x. P ) ) |
| 20 | 19 | oveq1i | |- ( ( ( T x. A ) x. P ) + ( T x. C ) ) = ( ( T x. ( A x. P ) ) + ( T x. C ) ) |
| 21 | 18 20 | eqtr4i | |- ( T x. ( ( A x. P ) + C ) ) = ( ( ( T x. A ) x. P ) + ( T x. C ) ) |
| 22 | 21 | oveq1i | |- ( ( T x. ( ( A x. P ) + C ) ) + ( ( B x. P ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( T x. C ) ) + ( ( B x. P ) + D ) ) |
| 23 | 13 14 | mulcli | |- ( T x. A ) e. CC |
| 24 | 3 | nn0cni | |- B e. CC |
| 25 | 23 24 15 | adddiri | |- ( ( ( T x. A ) + B ) x. P ) = ( ( ( T x. A ) x. P ) + ( B x. P ) ) |
| 26 | 25 | oveq1i | |- ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( B x. P ) ) + ( ( T x. C ) + D ) ) |
| 27 | 23 15 | mulcli | |- ( ( T x. A ) x. P ) e. CC |
| 28 | 13 17 | mulcli | |- ( T x. C ) e. CC |
| 29 | 24 15 | mulcli | |- ( B x. P ) e. CC |
| 30 | 5 | nn0cni | |- D e. CC |
| 31 | 27 28 29 30 | add4i | |- ( ( ( ( T x. A ) x. P ) + ( T x. C ) ) + ( ( B x. P ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( B x. P ) ) + ( ( T x. C ) + D ) ) |
| 32 | 26 31 | eqtr4i | |- ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( T x. C ) ) + ( ( B x. P ) + D ) ) |
| 33 | 22 32 | eqtr4i | |- ( ( T x. ( ( A x. P ) + C ) ) + ( ( B x. P ) + D ) ) = ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) |
| 34 | 9 | oveq2i | |- ( T x. ( ( A x. P ) + C ) ) = ( T x. E ) |
| 35 | 34 10 | oveq12i | |- ( ( T x. ( ( A x. P ) + C ) ) + ( ( B x. P ) + D ) ) = ( ( T x. E ) + F ) |
| 36 | 12 33 35 | 3eqtr2i | |- ( ( M x. P ) + N ) = ( ( T x. E ) + F ) |