This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Remark 3.4(B) of Beran p. 98. (Contributed by NM, 10-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normlem9at | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A -h B ) .ih ( A -h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) - ( ( A .ih B ) + ( B .ih A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A -h B ) = ( if ( A e. ~H , A , 0h ) -h B ) ) |
|
| 2 | 1 1 | oveq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A -h B ) .ih ( A -h B ) ) = ( ( if ( A e. ~H , A , 0h ) -h B ) .ih ( if ( A e. ~H , A , 0h ) -h B ) ) ) |
| 3 | id | |- ( A = if ( A e. ~H , A , 0h ) -> A = if ( A e. ~H , A , 0h ) ) |
|
| 4 | 3 3 | oveq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( A .ih A ) = ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) |
| 5 | 4 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A .ih A ) + ( B .ih B ) ) = ( ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) + ( B .ih B ) ) ) |
| 6 | oveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A .ih B ) = ( if ( A e. ~H , A , 0h ) .ih B ) ) |
|
| 7 | oveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( B .ih A ) = ( B .ih if ( A e. ~H , A , 0h ) ) ) |
|
| 8 | 6 7 | oveq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A .ih B ) + ( B .ih A ) ) = ( ( if ( A e. ~H , A , 0h ) .ih B ) + ( B .ih if ( A e. ~H , A , 0h ) ) ) ) |
| 9 | 5 8 | oveq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( A .ih A ) + ( B .ih B ) ) - ( ( A .ih B ) + ( B .ih A ) ) ) = ( ( ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) + ( B .ih B ) ) - ( ( if ( A e. ~H , A , 0h ) .ih B ) + ( B .ih if ( A e. ~H , A , 0h ) ) ) ) ) |
| 10 | 2 9 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( A -h B ) .ih ( A -h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) - ( ( A .ih B ) + ( B .ih A ) ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h B ) .ih ( if ( A e. ~H , A , 0h ) -h B ) ) = ( ( ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) + ( B .ih B ) ) - ( ( if ( A e. ~H , A , 0h ) .ih B ) + ( B .ih if ( A e. ~H , A , 0h ) ) ) ) ) ) |
| 11 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
|
| 12 | 11 11 | oveq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h B ) .ih ( if ( A e. ~H , A , 0h ) -h B ) ) = ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) .ih ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
| 13 | id | |- ( B = if ( B e. ~H , B , 0h ) -> B = if ( B e. ~H , B , 0h ) ) |
|
| 14 | 13 13 | oveq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( B .ih B ) = ( if ( B e. ~H , B , 0h ) .ih if ( B e. ~H , B , 0h ) ) ) |
| 15 | 14 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) + ( B .ih B ) ) = ( ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) + ( if ( B e. ~H , B , 0h ) .ih if ( B e. ~H , B , 0h ) ) ) ) |
| 16 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) .ih B ) = ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) ) |
|
| 17 | oveq1 | |- ( B = if ( B e. ~H , B , 0h ) -> ( B .ih if ( A e. ~H , A , 0h ) ) = ( if ( B e. ~H , B , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) |
|
| 18 | 16 17 | oveq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) .ih B ) + ( B .ih if ( A e. ~H , A , 0h ) ) ) = ( ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) + ( if ( B e. ~H , B , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) ) |
| 19 | 15 18 | oveq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) + ( B .ih B ) ) - ( ( if ( A e. ~H , A , 0h ) .ih B ) + ( B .ih if ( A e. ~H , A , 0h ) ) ) ) = ( ( ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) + ( if ( B e. ~H , B , 0h ) .ih if ( B e. ~H , B , 0h ) ) ) - ( ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) + ( if ( B e. ~H , B , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) ) ) |
| 20 | 12 19 | eqeq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h B ) .ih ( if ( A e. ~H , A , 0h ) -h B ) ) = ( ( ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) + ( B .ih B ) ) - ( ( if ( A e. ~H , A , 0h ) .ih B ) + ( B .ih if ( A e. ~H , A , 0h ) ) ) ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) .ih ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) = ( ( ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) + ( if ( B e. ~H , B , 0h ) .ih if ( B e. ~H , B , 0h ) ) ) - ( ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) + ( if ( B e. ~H , B , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) ) ) ) |
| 21 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 22 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 23 | 21 22 21 22 | normlem9 | |- ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) .ih ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) = ( ( ( if ( A e. ~H , A , 0h ) .ih if ( A e. ~H , A , 0h ) ) + ( if ( B e. ~H , B , 0h ) .ih if ( B e. ~H , B , 0h ) ) ) - ( ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) + ( if ( B e. ~H , B , 0h ) .ih if ( A e. ~H , A , 0h ) ) ) ) |
| 24 | 10 20 23 | dedth2h | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A -h B ) .ih ( A -h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) - ( ( A .ih B ) + ( B .ih A ) ) ) ) |