This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication with zero. Exercise 16 of Enderton p. 82. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnm0r | |- ( A e. _om -> ( (/) .o A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = (/) -> ( (/) .o x ) = ( (/) .o (/) ) ) |
|
| 2 | 1 | eqeq1d | |- ( x = (/) -> ( ( (/) .o x ) = (/) <-> ( (/) .o (/) ) = (/) ) ) |
| 3 | oveq2 | |- ( x = y -> ( (/) .o x ) = ( (/) .o y ) ) |
|
| 4 | 3 | eqeq1d | |- ( x = y -> ( ( (/) .o x ) = (/) <-> ( (/) .o y ) = (/) ) ) |
| 5 | oveq2 | |- ( x = suc y -> ( (/) .o x ) = ( (/) .o suc y ) ) |
|
| 6 | 5 | eqeq1d | |- ( x = suc y -> ( ( (/) .o x ) = (/) <-> ( (/) .o suc y ) = (/) ) ) |
| 7 | oveq2 | |- ( x = A -> ( (/) .o x ) = ( (/) .o A ) ) |
|
| 8 | 7 | eqeq1d | |- ( x = A -> ( ( (/) .o x ) = (/) <-> ( (/) .o A ) = (/) ) ) |
| 9 | 0elon | |- (/) e. On |
|
| 10 | om0 | |- ( (/) e. On -> ( (/) .o (/) ) = (/) ) |
|
| 11 | 9 10 | ax-mp | |- ( (/) .o (/) ) = (/) |
| 12 | oveq1 | |- ( ( (/) .o y ) = (/) -> ( ( (/) .o y ) +o (/) ) = ( (/) +o (/) ) ) |
|
| 13 | oa0 | |- ( (/) e. On -> ( (/) +o (/) ) = (/) ) |
|
| 14 | 9 13 | ax-mp | |- ( (/) +o (/) ) = (/) |
| 15 | 12 14 | eqtrdi | |- ( ( (/) .o y ) = (/) -> ( ( (/) .o y ) +o (/) ) = (/) ) |
| 16 | peano1 | |- (/) e. _om |
|
| 17 | nnmsuc | |- ( ( (/) e. _om /\ y e. _om ) -> ( (/) .o suc y ) = ( ( (/) .o y ) +o (/) ) ) |
|
| 18 | 16 17 | mpan | |- ( y e. _om -> ( (/) .o suc y ) = ( ( (/) .o y ) +o (/) ) ) |
| 19 | 18 | eqeq1d | |- ( y e. _om -> ( ( (/) .o suc y ) = (/) <-> ( ( (/) .o y ) +o (/) ) = (/) ) ) |
| 20 | 15 19 | imbitrrid | |- ( y e. _om -> ( ( (/) .o y ) = (/) -> ( (/) .o suc y ) = (/) ) ) |
| 21 | 2 4 6 8 11 20 | finds | |- ( A e. _om -> ( (/) .o A ) = (/) ) |